基于跨尺度高频分量自学习的实时样本单图像超分辨算法

Chang Su, Li Tao
{"title":"基于跨尺度高频分量自学习的实时样本单图像超分辨算法","authors":"Chang Su, Li Tao","doi":"10.1109/ICASSP.2016.7471962","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a fast and dictionary-free example-based super-resolution (EBSR) algorithm to solve the contradiction in EBSR methods of their high performance in achieving high visual quality and their low efficiency and high costs. With a novel cross-scale high-frequency components (HFC) self-learning strategy, the missed HFC of a high-resolution (HR) image are approximated from its low-resolution counterparts. A high-quality estimation of the HR image is thus obtained by compensating the HFC to its initial guess. Simulations show that the proposed algorithm gets comparable results to the state-of-the-art EBSR but with much higher efficiency and lower costs.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A real-time example-based single-image super-resolution algorithm via cross-scale high-frequency components self-learning\",\"authors\":\"Chang Su, Li Tao\",\"doi\":\"10.1109/ICASSP.2016.7471962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a fast and dictionary-free example-based super-resolution (EBSR) algorithm to solve the contradiction in EBSR methods of their high performance in achieving high visual quality and their low efficiency and high costs. With a novel cross-scale high-frequency components (HFC) self-learning strategy, the missed HFC of a high-resolution (HR) image are approximated from its low-resolution counterparts. A high-quality estimation of the HR image is thus obtained by compensating the HFC to its initial guess. Simulations show that the proposed algorithm gets comparable results to the state-of-the-art EBSR but with much higher efficiency and lower costs.\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7471962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7471962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种快速且无字典的基于示例的超分辨率(EBSR)算法,解决了EBSR方法在实现高视觉质量方面性能优异与效率低、成本高的矛盾。采用一种新颖的跨尺度高频分量(HFC)自学习策略,从低分辨率图像中逼近高分辨率图像的缺失HFC。因此,通过将HFC补偿到其初始猜测,可以获得高质量的HR图像估计。仿真结果表明,该算法与目前最先进的EBSR算法效果相当,但具有更高的效率和更低的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A real-time example-based single-image super-resolution algorithm via cross-scale high-frequency components self-learning
In this paper, we propose a fast and dictionary-free example-based super-resolution (EBSR) algorithm to solve the contradiction in EBSR methods of their high performance in achieving high visual quality and their low efficiency and high costs. With a novel cross-scale high-frequency components (HFC) self-learning strategy, the missed HFC of a high-resolution (HR) image are approximated from its low-resolution counterparts. A high-quality estimation of the HR image is thus obtained by compensating the HFC to its initial guess. Simulations show that the proposed algorithm gets comparable results to the state-of-the-art EBSR but with much higher efficiency and lower costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Multilevel Quantization for Distributed Detection Linear Model-Based Intra Prediction in VVC Test Model Practical Concentric Open Sphere Cardioid Microphone Array Design for Higher Order Sound Field Capture Embedding Physical Augmentation and Wavelet Scattering Transform to Generative Adversarial Networks for Audio Classification with Limited Training Resources Improving ASR Robustness to Perturbed Speech Using Cycle-consistent Generative Adversarial Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1