动态立管用高分子材料的鉴定

C. McCord, Colin Jones
{"title":"动态立管用高分子材料的鉴定","authors":"C. McCord, Colin Jones","doi":"10.4043/31026-ms","DOIUrl":null,"url":null,"abstract":"\n Polymer liners have been used extensively in water injection flowlines for several years, however, have only recently gained traction as a corrosion protection solution for Steel Catenary Risers and other similar rigid pipe risers as the industry moves to more novel systems.\n In order to qualify a system for a dynamic service environment such as a riser, it is important to understand the system's fatigue response and characteristics to ensure that all potential failure modes are addressed. This is typically accomplished for rigid pipes via full scale resonance fatigue testing whereby a test specimen is subjected to a representative fatigue environment and point of failure determined.\n Rigid pipe specimens with polymer liner installed have been trialed and reported previously. In this programme, the full-scale test strings demonstrated that all the lined system components can withstand the standard fatigue performance test curves. However, it did not confirm the boundary conditions for failure of the polymer liner, as failure of the metallic host pipe always occurred first.\n A similar method can be used to test the polymer material in isolation, however given the strain levels involved and the material's inherent fatigue resistance, it was expected that the duration of testing would be impractical. It was therefore necessary to implement a test method that allowed for identification of the polymer boundary conditions within a reasonable time frame, whilst also allowing for comparison with existing fatigue testing.\n In order to achieve this, a small-scale fatigue testing programme was setup in line with ISO 18489, whereby pre-notched dumbbell samples would be prepared and tested, firstly at 23°C but also at 0°C and 60°C to not only allow comparison with existing full-scale data, but also allow determination of suitability across the full temperature range expected in service.\n Testing results have demonstrated that the polymer's fatigue resistance far exceeds that of the steel pipe, even with the inclusion of pre-initiated cracking in the samples. The testing was able to provide key data on parameters and their influence on the material's fatigue life such as temperature, stress and strain.\n Further to this, an additional test programme was setup to evaluate the influence that the vertical orientation of the riser has on the polymer liner system. In this test programme, the interaction force between the steel pipe and polymer liner was assessed to establish the necessary design criteria to ensure that the interaction force always exceeds the vertical self-weight of the liner.\n Testing results demonstrated that the steel pipe/liner interaction force exceeded the equivalent self-weight of the liner eliminating potential failure modes associated with creep. As a result, the vertical orientation of the riser does not present a risk to the integrity of the liner system.","PeriodicalId":11084,"journal":{"name":"Day 4 Thu, August 19, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualification of Polymer Materials for Dynamic Riser Service\",\"authors\":\"C. McCord, Colin Jones\",\"doi\":\"10.4043/31026-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Polymer liners have been used extensively in water injection flowlines for several years, however, have only recently gained traction as a corrosion protection solution for Steel Catenary Risers and other similar rigid pipe risers as the industry moves to more novel systems.\\n In order to qualify a system for a dynamic service environment such as a riser, it is important to understand the system's fatigue response and characteristics to ensure that all potential failure modes are addressed. This is typically accomplished for rigid pipes via full scale resonance fatigue testing whereby a test specimen is subjected to a representative fatigue environment and point of failure determined.\\n Rigid pipe specimens with polymer liner installed have been trialed and reported previously. In this programme, the full-scale test strings demonstrated that all the lined system components can withstand the standard fatigue performance test curves. However, it did not confirm the boundary conditions for failure of the polymer liner, as failure of the metallic host pipe always occurred first.\\n A similar method can be used to test the polymer material in isolation, however given the strain levels involved and the material's inherent fatigue resistance, it was expected that the duration of testing would be impractical. It was therefore necessary to implement a test method that allowed for identification of the polymer boundary conditions within a reasonable time frame, whilst also allowing for comparison with existing fatigue testing.\\n In order to achieve this, a small-scale fatigue testing programme was setup in line with ISO 18489, whereby pre-notched dumbbell samples would be prepared and tested, firstly at 23°C but also at 0°C and 60°C to not only allow comparison with existing full-scale data, but also allow determination of suitability across the full temperature range expected in service.\\n Testing results have demonstrated that the polymer's fatigue resistance far exceeds that of the steel pipe, even with the inclusion of pre-initiated cracking in the samples. The testing was able to provide key data on parameters and their influence on the material's fatigue life such as temperature, stress and strain.\\n Further to this, an additional test programme was setup to evaluate the influence that the vertical orientation of the riser has on the polymer liner system. In this test programme, the interaction force between the steel pipe and polymer liner was assessed to establish the necessary design criteria to ensure that the interaction force always exceeds the vertical self-weight of the liner.\\n Testing results demonstrated that the steel pipe/liner interaction force exceeded the equivalent self-weight of the liner eliminating potential failure modes associated with creep. As a result, the vertical orientation of the riser does not present a risk to the integrity of the liner system.\",\"PeriodicalId\":11084,\"journal\":{\"name\":\"Day 4 Thu, August 19, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, August 19, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/31026-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, August 19, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31026-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚合物衬管已经在注水管线中广泛应用了几年,然而,直到最近,随着行业向更新颖的系统发展,聚合物衬管才开始作为钢悬链线立管和其他类似刚性管立管的防腐解决方案而受到关注。为了使系统能够适应立管等动态服务环境,了解系统的疲劳响应和特性非常重要,以确保解决所有潜在的故障模式。这通常是通过全尺寸共振疲劳测试来完成的,在全尺寸共振疲劳测试中,测试样品受到典型的疲劳环境和确定的失效点。安装了聚合物衬垫的刚性管样品已经进行了试验和报道。在该项目中,全尺寸测试柱表明,所有衬管系统组件都能承受标准疲劳性能测试曲线。然而,由于金属主管总是先发生破坏,因此没有确定聚合物衬管破坏的边界条件。类似的方法可用于隔离测试聚合物材料,但考虑到所涉及的应变水平和材料固有的抗疲劳性,预计测试的持续时间将是不切实际的。因此,有必要实施一种测试方法,允许在合理的时间范围内识别聚合物的边界条件,同时也允许与现有的疲劳测试进行比较。为了实现这一目标,根据ISO 18489建立了一个小规模的疲劳测试程序,其中准备了预缺口哑铃样品并进行测试,首先在23°C,然后在0°C和60°C进行测试,不仅可以与现有的全尺寸数据进行比较,还可以确定在预期的整个温度范围内的适用性。测试结果表明,即使在样品中含有预裂纹,聚合物的抗疲劳性能也远远超过钢管。该测试能够提供关键参数数据及其对材料疲劳寿命的影响,如温度、应力和应变。此外,还设置了一个额外的测试程序,以评估立管的垂直方向对聚合物尾管系统的影响。在该试验程序中,评估了钢管与聚合物衬板之间的相互作用力,以建立必要的设计准则,以确保相互作用力始终超过衬板的垂直自重。试验结果表明,钢管/衬板的相互作用力超过衬板的等效自重,消除了与蠕变相关的潜在破坏模式。因此,立管的垂直方向不会对尾管系统的完整性构成威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Qualification of Polymer Materials for Dynamic Riser Service
Polymer liners have been used extensively in water injection flowlines for several years, however, have only recently gained traction as a corrosion protection solution for Steel Catenary Risers and other similar rigid pipe risers as the industry moves to more novel systems. In order to qualify a system for a dynamic service environment such as a riser, it is important to understand the system's fatigue response and characteristics to ensure that all potential failure modes are addressed. This is typically accomplished for rigid pipes via full scale resonance fatigue testing whereby a test specimen is subjected to a representative fatigue environment and point of failure determined. Rigid pipe specimens with polymer liner installed have been trialed and reported previously. In this programme, the full-scale test strings demonstrated that all the lined system components can withstand the standard fatigue performance test curves. However, it did not confirm the boundary conditions for failure of the polymer liner, as failure of the metallic host pipe always occurred first. A similar method can be used to test the polymer material in isolation, however given the strain levels involved and the material's inherent fatigue resistance, it was expected that the duration of testing would be impractical. It was therefore necessary to implement a test method that allowed for identification of the polymer boundary conditions within a reasonable time frame, whilst also allowing for comparison with existing fatigue testing. In order to achieve this, a small-scale fatigue testing programme was setup in line with ISO 18489, whereby pre-notched dumbbell samples would be prepared and tested, firstly at 23°C but also at 0°C and 60°C to not only allow comparison with existing full-scale data, but also allow determination of suitability across the full temperature range expected in service. Testing results have demonstrated that the polymer's fatigue resistance far exceeds that of the steel pipe, even with the inclusion of pre-initiated cracking in the samples. The testing was able to provide key data on parameters and their influence on the material's fatigue life such as temperature, stress and strain. Further to this, an additional test programme was setup to evaluate the influence that the vertical orientation of the riser has on the polymer liner system. In this test programme, the interaction force between the steel pipe and polymer liner was assessed to establish the necessary design criteria to ensure that the interaction force always exceeds the vertical self-weight of the liner. Testing results demonstrated that the steel pipe/liner interaction force exceeded the equivalent self-weight of the liner eliminating potential failure modes associated with creep. As a result, the vertical orientation of the riser does not present a risk to the integrity of the liner system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Qualification of Barrier Fluidless, Sealless Seawater Canned Motor Pumps Hull Condition Monitoring and Lifetime Estimation by the Combination of On-Board Sensing and Digital Twin Technology Unconventional Approach Simplifies Steel Catenary Riser Decommissioning InspectTM Computed Tomography for NDT of Subsea Pipelines Novel Active Slug Control in Angola - Development & Field Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1