Larry C. Llewellyn, M. Grimaila, D. Hodson, Scott Graham
{"title":"量化k维复值函数非线性的度量","authors":"Larry C. Llewellyn, M. Grimaila, D. Hodson, Scott Graham","doi":"10.1177/15485129221080399","DOIUrl":null,"url":null,"abstract":"Modeling and simulation is a proven cost-efficient means for studying the behavioral dynamics of modern systems of systems. Our research is focused on evaluating the ability of neural networks to approximate multivariate, nonlinear, complex-valued functions. In order to evaluate the accuracy and performance of neural network approximations as a function of nonlinearity (NL), it is required to quantify the amount of NL present in the complex-valued function. In this paper, we introduce a metric for quantifying NL in multi-dimensional complex-valued functions. The metric is an extension of a real-valued NL metric into the k-dimensional complex domain. The metric is flexible as it uses discrete input–output data pairs instead of requiring closed-form continuous representations for calculating the NL of a function. The metric is calculated by generating a best-fit, least-squares solution (LSS) linear k-dimensional hyperplane for the function; calculating the L2 norm of the difference between the hyperplane and the function being evaluated; and scaling the result to yield a value between zero and one. The metric is easy to understand, generalizable to multiple dimensions, and has the added benefit that it does not require a closed-form continuous representation of the function being evaluated.","PeriodicalId":44661,"journal":{"name":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","volume":"24 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A metric for quantifying nonlinearity in k-dimensional complex-valued functions\",\"authors\":\"Larry C. Llewellyn, M. Grimaila, D. Hodson, Scott Graham\",\"doi\":\"10.1177/15485129221080399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling and simulation is a proven cost-efficient means for studying the behavioral dynamics of modern systems of systems. Our research is focused on evaluating the ability of neural networks to approximate multivariate, nonlinear, complex-valued functions. In order to evaluate the accuracy and performance of neural network approximations as a function of nonlinearity (NL), it is required to quantify the amount of NL present in the complex-valued function. In this paper, we introduce a metric for quantifying NL in multi-dimensional complex-valued functions. The metric is an extension of a real-valued NL metric into the k-dimensional complex domain. The metric is flexible as it uses discrete input–output data pairs instead of requiring closed-form continuous representations for calculating the NL of a function. The metric is calculated by generating a best-fit, least-squares solution (LSS) linear k-dimensional hyperplane for the function; calculating the L2 norm of the difference between the hyperplane and the function being evaluated; and scaling the result to yield a value between zero and one. The metric is easy to understand, generalizable to multiple dimensions, and has the added benefit that it does not require a closed-form continuous representation of the function being evaluated.\",\"PeriodicalId\":44661,\"journal\":{\"name\":\"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15485129221080399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129221080399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A metric for quantifying nonlinearity in k-dimensional complex-valued functions
Modeling and simulation is a proven cost-efficient means for studying the behavioral dynamics of modern systems of systems. Our research is focused on evaluating the ability of neural networks to approximate multivariate, nonlinear, complex-valued functions. In order to evaluate the accuracy and performance of neural network approximations as a function of nonlinearity (NL), it is required to quantify the amount of NL present in the complex-valued function. In this paper, we introduce a metric for quantifying NL in multi-dimensional complex-valued functions. The metric is an extension of a real-valued NL metric into the k-dimensional complex domain. The metric is flexible as it uses discrete input–output data pairs instead of requiring closed-form continuous representations for calculating the NL of a function. The metric is calculated by generating a best-fit, least-squares solution (LSS) linear k-dimensional hyperplane for the function; calculating the L2 norm of the difference between the hyperplane and the function being evaluated; and scaling the result to yield a value between zero and one. The metric is easy to understand, generalizable to multiple dimensions, and has the added benefit that it does not require a closed-form continuous representation of the function being evaluated.