流随机变分贝叶斯;数据流贝叶斯推理的改进方法

Nadheesh Jihan, Malith Jayasinghe, S. Perera
{"title":"流随机变分贝叶斯;数据流贝叶斯推理的改进方法","authors":"Nadheesh Jihan, Malith Jayasinghe, S. Perera","doi":"10.7287/peerj.preprints.27790v1","DOIUrl":null,"url":null,"abstract":"Online learning is an essential tool for predictive analysis based on continuous, endless data streams. Adopting Bayesian inference for online settings allows hierarchical modeling while representing the uncertainty of model parameters. Existing online inference techniques are motivated by either the traditional Bayesian updating or the stochastic optimizations. However, traditional Bayesian updating suffers from overconfidence posteriors, where posterior variance becomes too inadequate to adapt to new changes to the posterior. On the other hand, stochastic optimization of variational objective demands exhausting additional analysis to optimize a hyperparameter that controls the posterior variance. In this paper, we present ''Streaming Stochastic Variational Bayes\" (SSVB)—a novel online approximation inference framework for data streaming to address the aforementioned shortcomings of the current state-of-the-art. SSVB adjusts its posterior variance duly without any user-specified hyperparameters while efficiently accommodating the drifting patterns to the posteriors. Moreover, SSVB can be easily adopted by practitioners for a wide range of models (i.e. simple regression models to complex hierarchical models) with little additional analysis. We appraised the performance of SSVB against Population Variational Inference (PVI), Stochastic Variational Inference (SVI) and Black-box Streaming Variational Bayes (BB-SVB) using two non-conjugate probabilistic models; multinomial logistic regression and linear mixed effect model. Furthermore, we also discuss the significant accuracy gain with SSVB based inference against conventional online learning models for each task.","PeriodicalId":93040,"journal":{"name":"PeerJ preprints","volume":"52 1","pages":"e27790"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Streaming stochastic variational Bayes; An improved approach for Bayesian inference with data streams\",\"authors\":\"Nadheesh Jihan, Malith Jayasinghe, S. Perera\",\"doi\":\"10.7287/peerj.preprints.27790v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online learning is an essential tool for predictive analysis based on continuous, endless data streams. Adopting Bayesian inference for online settings allows hierarchical modeling while representing the uncertainty of model parameters. Existing online inference techniques are motivated by either the traditional Bayesian updating or the stochastic optimizations. However, traditional Bayesian updating suffers from overconfidence posteriors, where posterior variance becomes too inadequate to adapt to new changes to the posterior. On the other hand, stochastic optimization of variational objective demands exhausting additional analysis to optimize a hyperparameter that controls the posterior variance. In this paper, we present ''Streaming Stochastic Variational Bayes\\\" (SSVB)—a novel online approximation inference framework for data streaming to address the aforementioned shortcomings of the current state-of-the-art. SSVB adjusts its posterior variance duly without any user-specified hyperparameters while efficiently accommodating the drifting patterns to the posteriors. Moreover, SSVB can be easily adopted by practitioners for a wide range of models (i.e. simple regression models to complex hierarchical models) with little additional analysis. We appraised the performance of SSVB against Population Variational Inference (PVI), Stochastic Variational Inference (SVI) and Black-box Streaming Variational Bayes (BB-SVB) using two non-conjugate probabilistic models; multinomial logistic regression and linear mixed effect model. Furthermore, we also discuss the significant accuracy gain with SSVB based inference against conventional online learning models for each task.\",\"PeriodicalId\":93040,\"journal\":{\"name\":\"PeerJ preprints\",\"volume\":\"52 1\",\"pages\":\"e27790\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ preprints\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7287/peerj.preprints.27790v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ preprints","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7287/peerj.preprints.27790v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在线学习是基于连续、无休止的数据流进行预测分析的重要工具。采用贝叶斯推理对在线设置进行分层建模,同时表示模型参数的不确定性。现有的在线推理技术要么采用传统的贝叶斯更新算法,要么采用随机优化算法。然而,传统的贝叶斯更新存在后验过于自信的问题,后验方差不足以适应后验的新变化。另一方面,变分目标的随机优化需要耗费大量的额外分析来优化控制后验方差的超参数。在本文中,我们提出了“流随机变分贝叶斯”(SSVB) -一种用于数据流的新型在线近似推理框架,以解决当前最先进技术的上述缺点。SSVB在没有任何用户指定的超参数的情况下适当地调整其后向方差,同时有效地适应后向漂移模式。此外,SSVB可以很容易地被从业人员用于广泛的模型(即简单的回归模型到复杂的层次模型),几乎不需要额外的分析。我们使用两个非共轭概率模型评估了SSVB对总体变分推理(PVI)、随机变分推理(SVI)和黑盒流变分贝叶斯(BB-SVB)的性能;多项逻辑回归和线性混合效应模型。此外,我们还讨论了基于SSVB的推理在每个任务上对传统在线学习模型的显著精度增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Streaming stochastic variational Bayes; An improved approach for Bayesian inference with data streams
Online learning is an essential tool for predictive analysis based on continuous, endless data streams. Adopting Bayesian inference for online settings allows hierarchical modeling while representing the uncertainty of model parameters. Existing online inference techniques are motivated by either the traditional Bayesian updating or the stochastic optimizations. However, traditional Bayesian updating suffers from overconfidence posteriors, where posterior variance becomes too inadequate to adapt to new changes to the posterior. On the other hand, stochastic optimization of variational objective demands exhausting additional analysis to optimize a hyperparameter that controls the posterior variance. In this paper, we present ''Streaming Stochastic Variational Bayes" (SSVB)—a novel online approximation inference framework for data streaming to address the aforementioned shortcomings of the current state-of-the-art. SSVB adjusts its posterior variance duly without any user-specified hyperparameters while efficiently accommodating the drifting patterns to the posteriors. Moreover, SSVB can be easily adopted by practitioners for a wide range of models (i.e. simple regression models to complex hierarchical models) with little additional analysis. We appraised the performance of SSVB against Population Variational Inference (PVI), Stochastic Variational Inference (SVI) and Black-box Streaming Variational Bayes (BB-SVB) using two non-conjugate probabilistic models; multinomial logistic regression and linear mixed effect model. Furthermore, we also discuss the significant accuracy gain with SSVB based inference against conventional online learning models for each task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A framework for designing compassionate and ethical artificial intelligence and artificial consciousness Time series event correlation with DTW and Hierarchical Clustering methods Securing ad hoc on-demand distance vector routing protocol against the black hole DoS attack in MANETs 12 Grand Challenges in Single-Cell Data Science Mice tracking using the YOLO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1