{"title":"青光眼系统的动力学分析与电路设计","authors":"V. Rusyn, Diana Purwandari","doi":"10.46336/ijqrm.v1i4.89","DOIUrl":null,"url":null,"abstract":"In this paper, the Malasoma system based cubic function is presented. This system contains operational amplifiers, resistors, capacitors, multipliers, and voltage sources. The first stage, we analyze the Malasoma model and execute its stability. The phase portraits and bifurcation diagram are used to analyze the dynamic behaviors of the Malasoma model. The proposed circuit was modelled by utilizing NI’s MultiSim software environment. The electronic circuit is realized by using off-the-shelf components. MATLAB and MultiSim simulation results show a good agreement.","PeriodicalId":14309,"journal":{"name":"International Journal of Quantitative Research and Modeling","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamical Analysis and Circuit Design for Malasoma System\",\"authors\":\"V. Rusyn, Diana Purwandari\",\"doi\":\"10.46336/ijqrm.v1i4.89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Malasoma system based cubic function is presented. This system contains operational amplifiers, resistors, capacitors, multipliers, and voltage sources. The first stage, we analyze the Malasoma model and execute its stability. The phase portraits and bifurcation diagram are used to analyze the dynamic behaviors of the Malasoma model. The proposed circuit was modelled by utilizing NI’s MultiSim software environment. The electronic circuit is realized by using off-the-shelf components. MATLAB and MultiSim simulation results show a good agreement.\",\"PeriodicalId\":14309,\"journal\":{\"name\":\"International Journal of Quantitative Research and Modeling\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantitative Research and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46336/ijqrm.v1i4.89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantitative Research and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46336/ijqrm.v1i4.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamical Analysis and Circuit Design for Malasoma System
In this paper, the Malasoma system based cubic function is presented. This system contains operational amplifiers, resistors, capacitors, multipliers, and voltage sources. The first stage, we analyze the Malasoma model and execute its stability. The phase portraits and bifurcation diagram are used to analyze the dynamic behaviors of the Malasoma model. The proposed circuit was modelled by utilizing NI’s MultiSim software environment. The electronic circuit is realized by using off-the-shelf components. MATLAB and MultiSim simulation results show a good agreement.