U.D. Das, M. A. Hossain, J.U. Ahamed, M.E.A. Razzaq
{"title":"基于PGW的ZnO纳米流体壳管式换热器的传热与火用分析","authors":"U.D. Das, M. A. Hossain, J.U. Ahamed, M.E.A. Razzaq","doi":"10.15282/ijame.19.2.2022.12.0754","DOIUrl":null,"url":null,"abstract":"In this experimental work, ZnO nanoparticles were synthesized using the chemical precipitation method, and the nanoparticle structure and morphology were characterized through XRD and SEM. Heat transfer and exergetic characteristics were then studied in a shell and tube heat exchanger using PGW-based ZnO nanofluids varying nanoparticle volume concentration and nanofluid (shell side) flow rate at 6, 8, 10 and 12 litres/min. The hot water flow rate was fixed at 12 litres/min. The experimental results show that the heat transfer rate was improved by increasing the nanoparticle concentration and nanofluid flow rate. When the nanoparticle volume concentration was 0.3 per cent, the maximum enhancement of heat transfer rate and average heat transfer coefficient using ZnO nanofluids were 35.9 per cent and 40.2 per cent, respectively, in comparison to the base fluid. Exergy loss and dimensionless exergy loss both increased with nanofluid flow rate and dropped substantially with increased nanoparticle volume concentrations. The average increment of exergetic effectiveness at three different nanoparticle volume concentration (0.1%, 0.2%, and 0.3%) are 10.68%, 23.64%, and 31.23% respectively. The highest exergetic sustainability index (0.41) and lowest environmental impact factor (2.42) were observed when the nanoparticle concentration was 0.3% with the nanofluid flow rate of 6 litres/min.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"91 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Heat Transfer and Exergy Analysis of a Shell and Tube Heat Exchanger using PGW based ZnO Nanofluids\",\"authors\":\"U.D. Das, M. A. Hossain, J.U. Ahamed, M.E.A. Razzaq\",\"doi\":\"10.15282/ijame.19.2.2022.12.0754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this experimental work, ZnO nanoparticles were synthesized using the chemical precipitation method, and the nanoparticle structure and morphology were characterized through XRD and SEM. Heat transfer and exergetic characteristics were then studied in a shell and tube heat exchanger using PGW-based ZnO nanofluids varying nanoparticle volume concentration and nanofluid (shell side) flow rate at 6, 8, 10 and 12 litres/min. The hot water flow rate was fixed at 12 litres/min. The experimental results show that the heat transfer rate was improved by increasing the nanoparticle concentration and nanofluid flow rate. When the nanoparticle volume concentration was 0.3 per cent, the maximum enhancement of heat transfer rate and average heat transfer coefficient using ZnO nanofluids were 35.9 per cent and 40.2 per cent, respectively, in comparison to the base fluid. Exergy loss and dimensionless exergy loss both increased with nanofluid flow rate and dropped substantially with increased nanoparticle volume concentrations. The average increment of exergetic effectiveness at three different nanoparticle volume concentration (0.1%, 0.2%, and 0.3%) are 10.68%, 23.64%, and 31.23% respectively. The highest exergetic sustainability index (0.41) and lowest environmental impact factor (2.42) were observed when the nanoparticle concentration was 0.3% with the nanofluid flow rate of 6 litres/min.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.19.2.2022.12.0754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.2.2022.12.0754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Heat Transfer and Exergy Analysis of a Shell and Tube Heat Exchanger using PGW based ZnO Nanofluids
In this experimental work, ZnO nanoparticles were synthesized using the chemical precipitation method, and the nanoparticle structure and morphology were characterized through XRD and SEM. Heat transfer and exergetic characteristics were then studied in a shell and tube heat exchanger using PGW-based ZnO nanofluids varying nanoparticle volume concentration and nanofluid (shell side) flow rate at 6, 8, 10 and 12 litres/min. The hot water flow rate was fixed at 12 litres/min. The experimental results show that the heat transfer rate was improved by increasing the nanoparticle concentration and nanofluid flow rate. When the nanoparticle volume concentration was 0.3 per cent, the maximum enhancement of heat transfer rate and average heat transfer coefficient using ZnO nanofluids were 35.9 per cent and 40.2 per cent, respectively, in comparison to the base fluid. Exergy loss and dimensionless exergy loss both increased with nanofluid flow rate and dropped substantially with increased nanoparticle volume concentrations. The average increment of exergetic effectiveness at three different nanoparticle volume concentration (0.1%, 0.2%, and 0.3%) are 10.68%, 23.64%, and 31.23% respectively. The highest exergetic sustainability index (0.41) and lowest environmental impact factor (2.42) were observed when the nanoparticle concentration was 0.3% with the nanofluid flow rate of 6 litres/min.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.