山梨醇增塑HPMC/PVP共混膜的制备与表征

H. Somashekarappa, Y. Prakash, K. Hemalatha, T. Demappa, R. Somashekar
{"title":"山梨醇增塑HPMC/PVP共混膜的制备与表征","authors":"H. Somashekarappa, Y. Prakash, K. Hemalatha, T. Demappa, R. Somashekar","doi":"10.1155/2013/307514","DOIUrl":null,"url":null,"abstract":"The aim of this present work is to investigate the effect of plasticizers like Sorbitol on microstructural and mechanical properties of hydroxypropyl methylcellulose (HPMC) and Polyvinylpyrrolidone (PVP) blend films. The pure blend and plasticized blend films were prepared by solution casting method and investigated using wide angle X-ray scattering (WAXS) method. WAXS analysis confirms that the plasticizers can enter into macromolecular blend structure and destroy the crystallinity of the films. FTIR spectra show that there are a shift and decrease in the intensity of the peaks confirming the interaction of plasticizer with the blend. Mechanical properties like tensile strength and Young’s Modulus decrease up to 0.6% of Sorbitol content in the films. Percentage of elongation at break increases suggesting that the plasticized films are more flexible than pure blend films. These films are suitable to be used as environmental friendly and biodegradable packaging films.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"8 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Preparation and Characterization of HPMC/PVP Blend Films Plasticized with Sorbitol\",\"authors\":\"H. Somashekarappa, Y. Prakash, K. Hemalatha, T. Demappa, R. Somashekar\",\"doi\":\"10.1155/2013/307514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this present work is to investigate the effect of plasticizers like Sorbitol on microstructural and mechanical properties of hydroxypropyl methylcellulose (HPMC) and Polyvinylpyrrolidone (PVP) blend films. The pure blend and plasticized blend films were prepared by solution casting method and investigated using wide angle X-ray scattering (WAXS) method. WAXS analysis confirms that the plasticizers can enter into macromolecular blend structure and destroy the crystallinity of the films. FTIR spectra show that there are a shift and decrease in the intensity of the peaks confirming the interaction of plasticizer with the blend. Mechanical properties like tensile strength and Young’s Modulus decrease up to 0.6% of Sorbitol content in the films. Percentage of elongation at break increases suggesting that the plasticized films are more flexible than pure blend films. These films are suitable to be used as environmental friendly and biodegradable packaging films.\",\"PeriodicalId\":13278,\"journal\":{\"name\":\"Indian Journal of Materials Science\",\"volume\":\"8 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/307514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/307514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

研究了增塑剂山梨醇对羟丙基甲基纤维素(HPMC)和聚乙烯吡罗烷酮(PVP)共混膜微观结构和力学性能的影响。采用溶液浇铸法制备了纯共混和增塑共混薄膜,并用广角x射线散射(WAXS)法对其进行了研究。WAXS分析证实增塑剂可以进入大分子共混结构,破坏薄膜的结晶度。FTIR光谱显示,峰的强度有偏移和减弱,证实了增塑剂与共混物的相互作用。当山梨醇含量增加时,薄膜的抗拉强度和杨氏模量等力学性能会下降0.6%。断裂伸长率增加,表明塑化膜比纯共混膜更柔韧。这些薄膜适合用作环保和可生物降解的包装薄膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and Characterization of HPMC/PVP Blend Films Plasticized with Sorbitol
The aim of this present work is to investigate the effect of plasticizers like Sorbitol on microstructural and mechanical properties of hydroxypropyl methylcellulose (HPMC) and Polyvinylpyrrolidone (PVP) blend films. The pure blend and plasticized blend films were prepared by solution casting method and investigated using wide angle X-ray scattering (WAXS) method. WAXS analysis confirms that the plasticizers can enter into macromolecular blend structure and destroy the crystallinity of the films. FTIR spectra show that there are a shift and decrease in the intensity of the peaks confirming the interaction of plasticizer with the blend. Mechanical properties like tensile strength and Young’s Modulus decrease up to 0.6% of Sorbitol content in the films. Percentage of elongation at break increases suggesting that the plasticized films are more flexible than pure blend films. These films are suitable to be used as environmental friendly and biodegradable packaging films.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Mechanical Properties of Hybrid Aluminium 7075 Matrix Composite Material Reinforced with SiC and TiC Produced by Powder Metallurgy Method Process to Improve the Adherences of Copper to a PTFE Plate Preparation of Paper Mulberry Fibers and Possibility of Cotton/Paper Mulberry Yarns Production Three-Dimensional Unsteady State Temperature Distribution of Thin Rectangular Plate with Moving Point Heat Source Experimental Evaluation and Characterization of Electron Beam Welding of 2219 AL-Alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1