混合模型,鲁棒性和平方和证明

Samuel B. Hopkins, Jerry Li
{"title":"混合模型,鲁棒性和平方和证明","authors":"Samuel B. Hopkins, Jerry Li","doi":"10.1145/3188745.3188748","DOIUrl":null,"url":null,"abstract":"We use the Sum of Squares method to develop new efficient algorithms for learning well-separated mixtures of Gaussians and robust mean estimation, both in high dimensions, that substantially improve upon the statistical guarantees achieved by previous efficient algorithms. Our contributions are: Mixture models with separated means: We study mixtures of poly(k)-many k-dimensional distributions where the means of every pair of distributions are separated by at least kε. In the special case of spherical Gaussian mixtures, we give a kO(1/ε)-time algorithm that learns the means assuming separation at least kε, for any ε> 0. This is the first algorithm to improve on greedy (“single-linkage”) and spectral clustering, breaking a long-standing barrier for efficient algorithms at separation k1/4. Robust estimation: When an unknown (1−ε)-fraction of X1,…,Xn are chosen from a sub-Gaussian distribution with mean µ but the remaining points are chosen adversarially, we give an algorithm recovering µ to error ε1−1/t in time kO(t), so long as sub-Gaussian-ness up to O(t) moments can be certified by a Sum of Squares proof. This is the first polynomial-time algorithm with guarantees approaching the information-theoretic limit for non-Gaussian distributions. Previous algorithms could not achieve error better than ε1/2. As a corollary, we achieve similar results for robust covariance estimation. Both of these results are based on a unified technique. Inspired by recent algorithms of Diakonikolas et al. in robust statistics, we devise an SDP based on the Sum of Squares method for the following setting: given X1,…,Xn ∈ ℝk for large k and n = poly(k) with the promise that a subset of X1,…,Xn were sampled from a probability distribution with bounded moments, recover some information about that distribution.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"108 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"158","resultStr":"{\"title\":\"Mixture models, robustness, and sum of squares proofs\",\"authors\":\"Samuel B. Hopkins, Jerry Li\",\"doi\":\"10.1145/3188745.3188748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the Sum of Squares method to develop new efficient algorithms for learning well-separated mixtures of Gaussians and robust mean estimation, both in high dimensions, that substantially improve upon the statistical guarantees achieved by previous efficient algorithms. Our contributions are: Mixture models with separated means: We study mixtures of poly(k)-many k-dimensional distributions where the means of every pair of distributions are separated by at least kε. In the special case of spherical Gaussian mixtures, we give a kO(1/ε)-time algorithm that learns the means assuming separation at least kε, for any ε> 0. This is the first algorithm to improve on greedy (“single-linkage”) and spectral clustering, breaking a long-standing barrier for efficient algorithms at separation k1/4. Robust estimation: When an unknown (1−ε)-fraction of X1,…,Xn are chosen from a sub-Gaussian distribution with mean µ but the remaining points are chosen adversarially, we give an algorithm recovering µ to error ε1−1/t in time kO(t), so long as sub-Gaussian-ness up to O(t) moments can be certified by a Sum of Squares proof. This is the first polynomial-time algorithm with guarantees approaching the information-theoretic limit for non-Gaussian distributions. Previous algorithms could not achieve error better than ε1/2. As a corollary, we achieve similar results for robust covariance estimation. Both of these results are based on a unified technique. Inspired by recent algorithms of Diakonikolas et al. in robust statistics, we devise an SDP based on the Sum of Squares method for the following setting: given X1,…,Xn ∈ ℝk for large k and n = poly(k) with the promise that a subset of X1,…,Xn were sampled from a probability distribution with bounded moments, recover some information about that distribution.\",\"PeriodicalId\":20593,\"journal\":{\"name\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"158\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3188745.3188748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 158

摘要

我们使用平方和方法来开发新的高效算法,用于学习良好分离的高斯混合和鲁棒平均估计,两者都是在高维上,大大提高了以前高效算法所实现的统计保证。我们的贡献是:具有分离均值的混合模型:我们研究多(k)-许多k维分布的混合,其中每对分布的均值至少相隔kε。在球形高斯混合的特殊情况下,我们给出了一个kO(1/ε)时间算法,该算法学习了假设分离至少为kε的均值,对于任何ε> 0。这是第一个改进贪婪(“单链接”)和谱聚类的算法,打破了在分离k1/4时高效算法的长期障碍。鲁棒性估计:当从均值为μ的亚高斯分布中选取未知的(1−ε)分数X1,…,Xn,而其余的点都是逆向选取时,我们给出了一种在kO(t)时间内恢复μ to误差ε1−1/t的算法,只要在O(t)阶矩以内的亚高斯性可以通过平方和证明得到证明。这是第一个多项式时间算法,保证接近非高斯分布的信息论极限。以往的算法均不能达到优于ε1/2的误差。作为推论,我们在稳健协方差估计上也得到了类似的结果。这两个结果都是基于一个统一的技术。受Diakonikolas等人在鲁棒统计中的最新算法的启发,我们设计了一种基于平方和方法的SDP,用于以下设置:给定X1,…,Xn∈∈k(大k), n = poly(k),并承诺从具有有界矩的概率分布中采样X1,…,Xn的子集,恢复该分布的一些信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mixture models, robustness, and sum of squares proofs
We use the Sum of Squares method to develop new efficient algorithms for learning well-separated mixtures of Gaussians and robust mean estimation, both in high dimensions, that substantially improve upon the statistical guarantees achieved by previous efficient algorithms. Our contributions are: Mixture models with separated means: We study mixtures of poly(k)-many k-dimensional distributions where the means of every pair of distributions are separated by at least kε. In the special case of spherical Gaussian mixtures, we give a kO(1/ε)-time algorithm that learns the means assuming separation at least kε, for any ε> 0. This is the first algorithm to improve on greedy (“single-linkage”) and spectral clustering, breaking a long-standing barrier for efficient algorithms at separation k1/4. Robust estimation: When an unknown (1−ε)-fraction of X1,…,Xn are chosen from a sub-Gaussian distribution with mean µ but the remaining points are chosen adversarially, we give an algorithm recovering µ to error ε1−1/t in time kO(t), so long as sub-Gaussian-ness up to O(t) moments can be certified by a Sum of Squares proof. This is the first polynomial-time algorithm with guarantees approaching the information-theoretic limit for non-Gaussian distributions. Previous algorithms could not achieve error better than ε1/2. As a corollary, we achieve similar results for robust covariance estimation. Both of these results are based on a unified technique. Inspired by recent algorithms of Diakonikolas et al. in robust statistics, we devise an SDP based on the Sum of Squares method for the following setting: given X1,…,Xn ∈ ℝk for large k and n = poly(k) with the promise that a subset of X1,…,Xn were sampled from a probability distribution with bounded moments, recover some information about that distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-dependent hashing via nonlinear spectral gaps Interactive compression to external information The query complexity of graph isomorphism: bypassing distribution testing lower bounds Collusion resistant traitor tracing from learning with errors Explicit binary tree codes with polylogarithmic size alphabet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1