A. Wysocka-Rabin, M. Dobrzyńska, K. Pasicz, W. Skrzyński, E. Fabiszewska
{"title":"确定DQE作为数字乳房x线照相术中检测器的定量评估:实践中的测量和计算","authors":"A. Wysocka-Rabin, M. Dobrzyńska, K. Pasicz, W. Skrzyński, E. Fabiszewska","doi":"10.2478/pjmpe-2021-0027","DOIUrl":null,"url":null,"abstract":"Abstract Introduction: Advances in digital detector technology and methods of image presentation in digital mammography now offer the possibility of implementing mathematical assessment methods to quantitative image analysis. The aim of this work was to develop new software to simplify the application of the existing international standard for DQE in digital mammography and show in detail how it can be applied, using a Siemens Mammomat Inspiration as a model. Material and methods: Consistent with the IEC standard a 2 mm Al filter at the tube exit and images in DICOM format as raw data, without applying any additional post-processing were used. Measurements were performed for W/Rh anode/filter combination and different tube voltage values (26 ÷ 34 kV) without any anti-scatter grid. To verify new software doses ranging from 20-600 µGy were used in measurements. Exposure (air kerma) was measured using a calibrated radiation meter (Piranha Black 457, RTI Electronics AB, Sweden). MTF was determined, using an edge test device constructed specifically for this work. Results: It has been demonstrated that with the new software the DQE can be measured with the accuracy required by the international standard IEC 62220-1-2. DQE has been presented as a function of spatial frequency for W/Rh anode/filter combination and different tube voltage. Conclusions: New software was used successfully to analyze image quality parameters for the Siemens Mammomat Inspiration detector. This was done on the basis of an internationally accepted methodology. In the next step, mammographs with different detector types can be compared.","PeriodicalId":53955,"journal":{"name":"Polish Journal of Medical Physics and Engineering","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determination of DQE as a quantitative assessment of detectors in digital mammography: Measurements and calculation in practice\",\"authors\":\"A. Wysocka-Rabin, M. Dobrzyńska, K. Pasicz, W. Skrzyński, E. Fabiszewska\",\"doi\":\"10.2478/pjmpe-2021-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Introduction: Advances in digital detector technology and methods of image presentation in digital mammography now offer the possibility of implementing mathematical assessment methods to quantitative image analysis. The aim of this work was to develop new software to simplify the application of the existing international standard for DQE in digital mammography and show in detail how it can be applied, using a Siemens Mammomat Inspiration as a model. Material and methods: Consistent with the IEC standard a 2 mm Al filter at the tube exit and images in DICOM format as raw data, without applying any additional post-processing were used. Measurements were performed for W/Rh anode/filter combination and different tube voltage values (26 ÷ 34 kV) without any anti-scatter grid. To verify new software doses ranging from 20-600 µGy were used in measurements. Exposure (air kerma) was measured using a calibrated radiation meter (Piranha Black 457, RTI Electronics AB, Sweden). MTF was determined, using an edge test device constructed specifically for this work. Results: It has been demonstrated that with the new software the DQE can be measured with the accuracy required by the international standard IEC 62220-1-2. DQE has been presented as a function of spatial frequency for W/Rh anode/filter combination and different tube voltage. Conclusions: New software was used successfully to analyze image quality parameters for the Siemens Mammomat Inspiration detector. This was done on the basis of an internationally accepted methodology. In the next step, mammographs with different detector types can be compared.\",\"PeriodicalId\":53955,\"journal\":{\"name\":\"Polish Journal of Medical Physics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Journal of Medical Physics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/pjmpe-2021-0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Medical Physics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pjmpe-2021-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Determination of DQE as a quantitative assessment of detectors in digital mammography: Measurements and calculation in practice
Abstract Introduction: Advances in digital detector technology and methods of image presentation in digital mammography now offer the possibility of implementing mathematical assessment methods to quantitative image analysis. The aim of this work was to develop new software to simplify the application of the existing international standard for DQE in digital mammography and show in detail how it can be applied, using a Siemens Mammomat Inspiration as a model. Material and methods: Consistent with the IEC standard a 2 mm Al filter at the tube exit and images in DICOM format as raw data, without applying any additional post-processing were used. Measurements were performed for W/Rh anode/filter combination and different tube voltage values (26 ÷ 34 kV) without any anti-scatter grid. To verify new software doses ranging from 20-600 µGy were used in measurements. Exposure (air kerma) was measured using a calibrated radiation meter (Piranha Black 457, RTI Electronics AB, Sweden). MTF was determined, using an edge test device constructed specifically for this work. Results: It has been demonstrated that with the new software the DQE can be measured with the accuracy required by the international standard IEC 62220-1-2. DQE has been presented as a function of spatial frequency for W/Rh anode/filter combination and different tube voltage. Conclusions: New software was used successfully to analyze image quality parameters for the Siemens Mammomat Inspiration detector. This was done on the basis of an internationally accepted methodology. In the next step, mammographs with different detector types can be compared.
期刊介绍:
Polish Journal of Medical Physics and Engineering (PJMPE) (Online ISSN: 1898-0309; Print ISSN: 1425-4689) is an official publication of the Polish Society of Medical Physics. It is a peer-reviewed, open access scientific journal with no publication fees. The issues are published quarterly online. The Journal publishes original contribution in medical physics and biomedical engineering.