结合分类器进行深度学习面具人脸识别

Inf. Comput. Pub Date : 2023-07-21 DOI:10.3390/info14070421
Wen-Chang Cheng, Hung-Chou Hsiao, Yung-Fa Huang, Li-Hua Li
{"title":"结合分类器进行深度学习面具人脸识别","authors":"Wen-Chang Cheng, Hung-Chou Hsiao, Yung-Fa Huang, Li-Hua Li","doi":"10.3390/info14070421","DOIUrl":null,"url":null,"abstract":"This research proposes a single network model architecture for mask face recognition using the FaceNet training method. Three pre-trained convolutional neural networks of different sizes are combined, namely InceptionResNetV2, InceptionV3, and MobileNetV2. The models are augmented by connecting an otherwise fully connected network with a SoftMax output layer. We combine triplet loss and categorical cross-entropy loss to optimize the training process. In addition, the learning rate of the optimizer is dynamically updated using the cosine annealing mechanism, which improves the convergence of the model during training. Mask face recognition (MFR) experimental results on a custom MASK600 dataset show that proposed InceptionResNetV2 and InceptionV3 use only 20 training epochs, and MobileNetV2 uses only 50 training epochs, but to achieve more than 93% accuracy than the previous works of MFR with annealing. In addition to reaching a practical level, it saves time for training models and effectively reduces energy costs.","PeriodicalId":13622,"journal":{"name":"Inf. Comput.","volume":"12 1","pages":"421"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Classifiers for Deep Learning Mask Face Recognition\",\"authors\":\"Wen-Chang Cheng, Hung-Chou Hsiao, Yung-Fa Huang, Li-Hua Li\",\"doi\":\"10.3390/info14070421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research proposes a single network model architecture for mask face recognition using the FaceNet training method. Three pre-trained convolutional neural networks of different sizes are combined, namely InceptionResNetV2, InceptionV3, and MobileNetV2. The models are augmented by connecting an otherwise fully connected network with a SoftMax output layer. We combine triplet loss and categorical cross-entropy loss to optimize the training process. In addition, the learning rate of the optimizer is dynamically updated using the cosine annealing mechanism, which improves the convergence of the model during training. Mask face recognition (MFR) experimental results on a custom MASK600 dataset show that proposed InceptionResNetV2 and InceptionV3 use only 20 training epochs, and MobileNetV2 uses only 50 training epochs, but to achieve more than 93% accuracy than the previous works of MFR with annealing. In addition to reaching a practical level, it saves time for training models and effectively reduces energy costs.\",\"PeriodicalId\":13622,\"journal\":{\"name\":\"Inf. Comput.\",\"volume\":\"12 1\",\"pages\":\"421\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/info14070421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14070421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于FaceNet训练方法的面罩人脸识别的单一网络模型架构。将三个不同大小的预训练卷积神经网络(分别为InceptionResNetV2、InceptionV3和MobileNetV2)进行组合。通过将完全连接的网络与SoftMax输出层连接,可以增强模型。我们结合三重损失和分类交叉熵损失来优化训练过程。此外,利用余弦退火机制动态更新优化器的学习率,提高了模型在训练过程中的收敛性。在自定义MASK600数据集上的Mask人脸识别(MFR)实验结果表明,本文提出的InceptionResNetV2和InceptionV3只使用了20个训练epoch, MobileNetV2只使用了50个训练epoch,但与之前的MFR退火算法相比,准确率达到了93%以上。在达到实用水平的同时,节省了训练模型的时间,有效降低了能量成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining Classifiers for Deep Learning Mask Face Recognition
This research proposes a single network model architecture for mask face recognition using the FaceNet training method. Three pre-trained convolutional neural networks of different sizes are combined, namely InceptionResNetV2, InceptionV3, and MobileNetV2. The models are augmented by connecting an otherwise fully connected network with a SoftMax output layer. We combine triplet loss and categorical cross-entropy loss to optimize the training process. In addition, the learning rate of the optimizer is dynamically updated using the cosine annealing mechanism, which improves the convergence of the model during training. Mask face recognition (MFR) experimental results on a custom MASK600 dataset show that proposed InceptionResNetV2 and InceptionV3 use only 20 training epochs, and MobileNetV2 uses only 50 training epochs, but to achieve more than 93% accuracy than the previous works of MFR with annealing. In addition to reaching a practical level, it saves time for training models and effectively reduces energy costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traceable Constant-Size Multi-authority Credentials Pspace-Completeness of the Temporal Logic of Sub-Intervals and Suffixes Employee Productivity Assessment Using Fuzzy Inference System Correction of Threshold Determination in Rapid-Guessing Behaviour Detection Combining Classifiers for Deep Learning Mask Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1