{"title":"非点脉冲噪声去除的单斑低秩先验算法","authors":"Ruixuan Wang, E. Trucco","doi":"10.1109/ICCV.2013.137","DOIUrl":null,"url":null,"abstract":"This paper introduces a `low-rank prior' for small oriented noise-free image patches: considering an oriented patch as a matrix, a low-rank matrix approximation is enough to preserve the texture details in the properly oriented patch. Based on this prior, we propose a single-patch method within a generalized joint low-rank and sparse matrix recovery framework to simultaneously detect and remove non-point wise random-valued impulse noise (e.g., very small blobs). A weighting matrix is incorporated in the framework to encode an initial estimate of the spatial noise distribution. An accelerated proximal gradient method is adapted to estimate the optimal noise-free image patches. Experiments show the effectiveness of our framework in removing non-point wise random-valued impulse noise.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"1 1","pages":"1073-1080"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Single-Patch Low-Rank Prior for Non-pointwise Impulse Noise Removal\",\"authors\":\"Ruixuan Wang, E. Trucco\",\"doi\":\"10.1109/ICCV.2013.137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a `low-rank prior' for small oriented noise-free image patches: considering an oriented patch as a matrix, a low-rank matrix approximation is enough to preserve the texture details in the properly oriented patch. Based on this prior, we propose a single-patch method within a generalized joint low-rank and sparse matrix recovery framework to simultaneously detect and remove non-point wise random-valued impulse noise (e.g., very small blobs). A weighting matrix is incorporated in the framework to encode an initial estimate of the spatial noise distribution. An accelerated proximal gradient method is adapted to estimate the optimal noise-free image patches. Experiments show the effectiveness of our framework in removing non-point wise random-valued impulse noise.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"1 1\",\"pages\":\"1073-1080\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single-Patch Low-Rank Prior for Non-pointwise Impulse Noise Removal
This paper introduces a `low-rank prior' for small oriented noise-free image patches: considering an oriented patch as a matrix, a low-rank matrix approximation is enough to preserve the texture details in the properly oriented patch. Based on this prior, we propose a single-patch method within a generalized joint low-rank and sparse matrix recovery framework to simultaneously detect and remove non-point wise random-valued impulse noise (e.g., very small blobs). A weighting matrix is incorporated in the framework to encode an initial estimate of the spatial noise distribution. An accelerated proximal gradient method is adapted to estimate the optimal noise-free image patches. Experiments show the effectiveness of our framework in removing non-point wise random-valued impulse noise.