AQUAMan: SaaS可接受率调整的qos驱动的成本意识机制

A. Najjar, Yazan Mualla, O. Boissier, Gauthier Picard
{"title":"AQUAMan: SaaS可接受率调整的qos驱动的成本意识机制","authors":"A. Najjar, Yazan Mualla, O. Boissier, Gauthier Picard","doi":"10.1145/3106426.3106485","DOIUrl":null,"url":null,"abstract":"As more interactive and multimedia-rich applications are migrating to the cloud, end-user satisfaction and her Quality of Experience (QoE) will become a determinant factor to secure success for any Software as a Service (SaaS) provider. Yet, in order to survive in this competitive market, SaaS providers also need to maximize their Quality of Business (QoBiz) and minimize costs paid to cloud providers. However, most of the existing works in the literature adopt a provider-centric approach where the end-user preferences are overlooked. In this article, we propose the AQUAMan mechanism that gives the provider a fine-grained QoE-driven control over the service acceptability rate while taking into account both end-users' satisfaction and provider's QoBiz. The proposed solution is implemented using a multi-agent simulation environment. The results show that the SaaS provider is capable of attaining the predefined acceptability rate while respecting the imposed average cost per user. Furthermore, the results help the SaaS provider identify the limits of the adaptation mechanism and estimate the best average cost to be invested per user.","PeriodicalId":20685,"journal":{"name":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"AQUAMan: QoE-driven cost-aware mechanism for SaaS acceptability rate adaptation\",\"authors\":\"A. Najjar, Yazan Mualla, O. Boissier, Gauthier Picard\",\"doi\":\"10.1145/3106426.3106485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As more interactive and multimedia-rich applications are migrating to the cloud, end-user satisfaction and her Quality of Experience (QoE) will become a determinant factor to secure success for any Software as a Service (SaaS) provider. Yet, in order to survive in this competitive market, SaaS providers also need to maximize their Quality of Business (QoBiz) and minimize costs paid to cloud providers. However, most of the existing works in the literature adopt a provider-centric approach where the end-user preferences are overlooked. In this article, we propose the AQUAMan mechanism that gives the provider a fine-grained QoE-driven control over the service acceptability rate while taking into account both end-users' satisfaction and provider's QoBiz. The proposed solution is implemented using a multi-agent simulation environment. The results show that the SaaS provider is capable of attaining the predefined acceptability rate while respecting the imposed average cost per user. Furthermore, the results help the SaaS provider identify the limits of the adaptation mechanism and estimate the best average cost to be invested per user.\",\"PeriodicalId\":20685,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3106426.3106485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106426.3106485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

随着越来越多的交互式和多媒体应用程序迁移到云端,终端用户满意度和体验质量(QoE)将成为确保任何软件即服务(SaaS)提供商成功的决定性因素。然而,为了在这个竞争激烈的市场中生存,SaaS提供商还需要最大化其业务质量(QoBiz)并最小化支付给云提供商的成本。然而,文献中的大多数现有工作都采用了以提供者为中心的方法,忽略了最终用户的偏好。在本文中,我们提出了AQUAMan机制,该机制在考虑最终用户满意度和提供者的QoBiz的同时,为提供者提供了对服务可接受率的细粒度qos驱动控制。该解决方案采用多智能体仿真环境实现。结果表明,SaaS提供商能够在尊重强加的每个用户平均成本的情况下达到预定义的可接受率。此外,这些结果有助于SaaS提供商确定适应机制的限制,并估计每个用户的最佳平均投资成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AQUAMan: QoE-driven cost-aware mechanism for SaaS acceptability rate adaptation
As more interactive and multimedia-rich applications are migrating to the cloud, end-user satisfaction and her Quality of Experience (QoE) will become a determinant factor to secure success for any Software as a Service (SaaS) provider. Yet, in order to survive in this competitive market, SaaS providers also need to maximize their Quality of Business (QoBiz) and minimize costs paid to cloud providers. However, most of the existing works in the literature adopt a provider-centric approach where the end-user preferences are overlooked. In this article, we propose the AQUAMan mechanism that gives the provider a fine-grained QoE-driven control over the service acceptability rate while taking into account both end-users' satisfaction and provider's QoBiz. The proposed solution is implemented using a multi-agent simulation environment. The results show that the SaaS provider is capable of attaining the predefined acceptability rate while respecting the imposed average cost per user. Furthermore, the results help the SaaS provider identify the limits of the adaptation mechanism and estimate the best average cost to be invested per user.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WIMS 2020: The 10th International Conference on Web Intelligence, Mining and Semantics, Biarritz, France, June 30 - July 3, 2020 A deep learning approach for web service interactions Partial sums-based P-Rank computation in information networks Mining ordinal data under human response uncertainty Haste makes waste: a case to favour voting bots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1