A. Saddik, Rachid Latif, Abdelhafid El Ouardi, M. Elhoseny, A. Khelifi
{"title":"基于计算机开发的精准农业嵌入式系统:工具和应用","authors":"A. Saddik, Rachid Latif, Abdelhafid El Ouardi, M. Elhoseny, A. Khelifi","doi":"10.1080/09064710.2021.2024874","DOIUrl":null,"url":null,"abstract":"ABSTRACT Precision agriculture (PA) research aims to design decision systems based on agricultural site control and management. These systems consist of observing fields and measuring metrics to optimize yields and investments while preserving resources. The corresponding applications can be found on large agricultural areas based on satellites, unmanned aerial vehicles (UAVs), and sol robots. All these applications based on various algorithms that are complex in terms of processing time. If these algorithms are evaluated offline on work-stations or desktops, this is not the case for algorithms that need to be embedded and should operate and help make real-time decisions. We, therefore, need an advanced study using hardware-software co-design approach to design decision systems to embed different algorithms, including sensor data acquisition and processing units. In this work, we propose a review in processing information tools-based embedded systems in PA algorithms with different applications: weed detection, numerical counting, monitoring of plant indexes, and disease detection. This review has been based on more than 100 papers to extract useful information on the different techniques used and the information processing systems. The elaborated study presents the various tools, databases, and systems in order to extract the advantages and disadvantages of system and application.","PeriodicalId":7094,"journal":{"name":"Acta Agriculturae Scandinavica, Section B — Soil & Plant Science","volume":"5 1","pages":"589 - 611"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Computer development based embedded systems in precision agriculture: tools and application\",\"authors\":\"A. Saddik, Rachid Latif, Abdelhafid El Ouardi, M. Elhoseny, A. Khelifi\",\"doi\":\"10.1080/09064710.2021.2024874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Precision agriculture (PA) research aims to design decision systems based on agricultural site control and management. These systems consist of observing fields and measuring metrics to optimize yields and investments while preserving resources. The corresponding applications can be found on large agricultural areas based on satellites, unmanned aerial vehicles (UAVs), and sol robots. All these applications based on various algorithms that are complex in terms of processing time. If these algorithms are evaluated offline on work-stations or desktops, this is not the case for algorithms that need to be embedded and should operate and help make real-time decisions. We, therefore, need an advanced study using hardware-software co-design approach to design decision systems to embed different algorithms, including sensor data acquisition and processing units. In this work, we propose a review in processing information tools-based embedded systems in PA algorithms with different applications: weed detection, numerical counting, monitoring of plant indexes, and disease detection. This review has been based on more than 100 papers to extract useful information on the different techniques used and the information processing systems. The elaborated study presents the various tools, databases, and systems in order to extract the advantages and disadvantages of system and application.\",\"PeriodicalId\":7094,\"journal\":{\"name\":\"Acta Agriculturae Scandinavica, Section B — Soil & Plant Science\",\"volume\":\"5 1\",\"pages\":\"589 - 611\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Agriculturae Scandinavica, Section B — Soil & Plant Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09064710.2021.2024874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Agriculturae Scandinavica, Section B — Soil & Plant Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09064710.2021.2024874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computer development based embedded systems in precision agriculture: tools and application
ABSTRACT Precision agriculture (PA) research aims to design decision systems based on agricultural site control and management. These systems consist of observing fields and measuring metrics to optimize yields and investments while preserving resources. The corresponding applications can be found on large agricultural areas based on satellites, unmanned aerial vehicles (UAVs), and sol robots. All these applications based on various algorithms that are complex in terms of processing time. If these algorithms are evaluated offline on work-stations or desktops, this is not the case for algorithms that need to be embedded and should operate and help make real-time decisions. We, therefore, need an advanced study using hardware-software co-design approach to design decision systems to embed different algorithms, including sensor data acquisition and processing units. In this work, we propose a review in processing information tools-based embedded systems in PA algorithms with different applications: weed detection, numerical counting, monitoring of plant indexes, and disease detection. This review has been based on more than 100 papers to extract useful information on the different techniques used and the information processing systems. The elaborated study presents the various tools, databases, and systems in order to extract the advantages and disadvantages of system and application.