K-Ary N-Cube NoC路由器集中引起的流量瓶颈性能分析

S. Loucif
{"title":"K-Ary N-Cube NoC路由器集中引起的流量瓶颈性能分析","authors":"S. Loucif","doi":"10.1109/AINA.2015.172","DOIUrl":null,"url":null,"abstract":"Mesh and torus are the most popular topologies suggested to implement Network-on-Chip (NoC). Concentration has been suggested to reduce networks complexity in terms of routers and wiring requirements. Several studies have examined the performance of concentrated mesh. This paper expands on these studies to re-evaluate the benefits of concentration in mesh and torus. Three alternative router configurations are proposed to investigate bottleneck performance due to concentration. Simulation results indicate that, under uniform traffic distribution, only large ratios of packet length-to-average hop count is in favor of concentrated mesh and torus. The Cmesh profits from its high channel bandwidth to offer better performance than Ctorus. The latter is unable to overcome the high packet serialization overhead even when using separate input ports at routers, one for each IP core, to reduce packet contention. Furthermore, non-local traffic at routers suffers more from contention than local traffic. Providing dedicated input ports, one for each IP core, at routers, reduces the average packet latency by 80% compared to a configuration with a single input port shared by all IP cores of the cluster, while only 20% improvement is achieved by adding a separate input port to service local traffic. However, when high traffic load is sent locally to the IP cores belonging to the same cluster as the source, a router configuration with multiple channels servicing local traffic greatly reduces the overall packet latency.","PeriodicalId":6845,"journal":{"name":"2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops","volume":"16 1","pages":"98-105"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Analysis of Traffic Bottleneck Induced by Concentration at K-Ary N-Cube NoC Routers\",\"authors\":\"S. Loucif\",\"doi\":\"10.1109/AINA.2015.172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mesh and torus are the most popular topologies suggested to implement Network-on-Chip (NoC). Concentration has been suggested to reduce networks complexity in terms of routers and wiring requirements. Several studies have examined the performance of concentrated mesh. This paper expands on these studies to re-evaluate the benefits of concentration in mesh and torus. Three alternative router configurations are proposed to investigate bottleneck performance due to concentration. Simulation results indicate that, under uniform traffic distribution, only large ratios of packet length-to-average hop count is in favor of concentrated mesh and torus. The Cmesh profits from its high channel bandwidth to offer better performance than Ctorus. The latter is unable to overcome the high packet serialization overhead even when using separate input ports at routers, one for each IP core, to reduce packet contention. Furthermore, non-local traffic at routers suffers more from contention than local traffic. Providing dedicated input ports, one for each IP core, at routers, reduces the average packet latency by 80% compared to a configuration with a single input port shared by all IP cores of the cluster, while only 20% improvement is achieved by adding a separate input port to service local traffic. However, when high traffic load is sent locally to the IP cores belonging to the same cluster as the source, a router configuration with multiple channels servicing local traffic greatly reduces the overall packet latency.\",\"PeriodicalId\":6845,\"journal\":{\"name\":\"2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops\",\"volume\":\"16 1\",\"pages\":\"98-105\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AINA.2015.172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINA.2015.172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

网格和环面是实现片上网络(NoC)最流行的拓扑结构。有人建议集中化可以减少路由器和布线要求方面的网络复杂性。一些研究考察了浓缩网的性能。本文对这些研究进行了扩展,重新评估了网格和环面集中的好处。提出了三种可选的路由器配置来研究由于集中而导致的瓶颈性能。仿真结果表明,在流量均匀分布的情况下,只有数据包长度与平均跳数之比较大才有利于集中的网格和环面。Cmesh得益于其高信道带宽,提供比Ctorus更好的性能。后者无法克服高数据包串行化开销,即使在路由器上使用单独的输入端口(每个IP核一个)以减少数据包争用。此外,路由器上的非本地流量比本地流量更容易发生争用。在路由器上为每个IP核提供一个专用的输入端口,与集群中所有IP核共享单个输入端口的配置相比,平均数据包延迟减少了80%,而通过添加单独的输入端口来服务本地流量只能实现20%的改进。但是,当高流量负载在本地发送到与源属于同一集群的IP核时,具有多个通道服务本地流量的路由器配置大大降低了总体数据包延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Analysis of Traffic Bottleneck Induced by Concentration at K-Ary N-Cube NoC Routers
Mesh and torus are the most popular topologies suggested to implement Network-on-Chip (NoC). Concentration has been suggested to reduce networks complexity in terms of routers and wiring requirements. Several studies have examined the performance of concentrated mesh. This paper expands on these studies to re-evaluate the benefits of concentration in mesh and torus. Three alternative router configurations are proposed to investigate bottleneck performance due to concentration. Simulation results indicate that, under uniform traffic distribution, only large ratios of packet length-to-average hop count is in favor of concentrated mesh and torus. The Cmesh profits from its high channel bandwidth to offer better performance than Ctorus. The latter is unable to overcome the high packet serialization overhead even when using separate input ports at routers, one for each IP core, to reduce packet contention. Furthermore, non-local traffic at routers suffers more from contention than local traffic. Providing dedicated input ports, one for each IP core, at routers, reduces the average packet latency by 80% compared to a configuration with a single input port shared by all IP cores of the cluster, while only 20% improvement is achieved by adding a separate input port to service local traffic. However, when high traffic load is sent locally to the IP cores belonging to the same cluster as the source, a router configuration with multiple channels servicing local traffic greatly reduces the overall packet latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Analysis of WMN-GA Simulation System for Different WMN Architectures Considering OLSR A Network Topology Visualization System Based on Mobile AR Technology A Framework for Security Services Based on Software-Defined Networking Extended Lifetime Based Elliptical Sink-Mobility in Depth Based Routing Protocol for UWSNs A Proposal and Implementation of an ID Federation that Conceals a Web Service from an Authentication Server
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1