一种用于恶意URL检测的人工智能模型的开发与评估

Fatih Ti̇ryaki̇, Ümit Şentürk, I. Yücedag
{"title":"一种用于恶意URL检测的人工智能模型的开发与评估","authors":"Fatih Ti̇ryaki̇, Ümit Şentürk, I. Yücedag","doi":"10.31590/ejosat.1234556","DOIUrl":null,"url":null,"abstract":"Today, the increased use of the internet has become important in our lives and new communication technologies, social networks, e-commerce, online banking, and among other applications have a significant impact on the promotion and growth of business. In our study, we aimed to work with a large dataset and to achieve the best results in detecting malicious URL addresses using an artificial intelligence model. A 7-layer RNN model was used in the study, and two similar national and international datasets were combined and merged to create a big new dataset consisting of 579,112 URL addresses. Then, this new data set is divided into training and test sets. first data set was trained at the model and then the second data set was processed test. When this data set was processed in our model, we achieved a success rate of over 91%. This rate is a very good result of detecting malicious url addresses. Your contribution with this work is significant in developing more effective methods for detecting harmful sites as internet usage increases, parallel use of artificial intelligence models makes detection of such sites more effective and potentially assist users in protecting from various types of cyber-attacks is targeted.","PeriodicalId":12068,"journal":{"name":"European Journal of Science and Technology","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Developing and Evaluating an Artificial Intelligence Model for Malicious URL Detection\",\"authors\":\"Fatih Ti̇ryaki̇, Ümit Şentürk, I. Yücedag\",\"doi\":\"10.31590/ejosat.1234556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, the increased use of the internet has become important in our lives and new communication technologies, social networks, e-commerce, online banking, and among other applications have a significant impact on the promotion and growth of business. In our study, we aimed to work with a large dataset and to achieve the best results in detecting malicious URL addresses using an artificial intelligence model. A 7-layer RNN model was used in the study, and two similar national and international datasets were combined and merged to create a big new dataset consisting of 579,112 URL addresses. Then, this new data set is divided into training and test sets. first data set was trained at the model and then the second data set was processed test. When this data set was processed in our model, we achieved a success rate of over 91%. This rate is a very good result of detecting malicious url addresses. Your contribution with this work is significant in developing more effective methods for detecting harmful sites as internet usage increases, parallel use of artificial intelligence models makes detection of such sites more effective and potentially assist users in protecting from various types of cyber-attacks is targeted.\",\"PeriodicalId\":12068,\"journal\":{\"name\":\"European Journal of Science and Technology\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31590/ejosat.1234556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31590/ejosat.1234556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

今天,互联网的使用越来越多,在我们的生活中变得越来越重要,新的通信技术、社交网络、电子商务、网上银行等应用对商业的促进和增长产生了重大影响。在我们的研究中,我们的目标是使用大型数据集,并使用人工智能模型在检测恶意URL地址方面取得最佳结果。研究中使用了一个7层RNN模型,并将两个相似的国家和国际数据集组合合并,创建了一个由579,112个URL地址组成的大型新数据集。然后,将新数据集分为训练集和测试集。首先对模型进行数据集训练,然后对第二组数据集进行处理测试。当这个数据集在我们的模型中处理时,我们取得了超过91%的成功率。这个速率是检测恶意url地址的一个非常好的结果。随着互联网使用的增加,您对这项工作的贡献在开发更有效的检测有害网站的方法方面具有重要意义,人工智能模型的并行使用使此类网站的检测更有效,并可能帮助用户保护免受各种类型的网络攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing and Evaluating an Artificial Intelligence Model for Malicious URL Detection
Today, the increased use of the internet has become important in our lives and new communication technologies, social networks, e-commerce, online banking, and among other applications have a significant impact on the promotion and growth of business. In our study, we aimed to work with a large dataset and to achieve the best results in detecting malicious URL addresses using an artificial intelligence model. A 7-layer RNN model was used in the study, and two similar national and international datasets were combined and merged to create a big new dataset consisting of 579,112 URL addresses. Then, this new data set is divided into training and test sets. first data set was trained at the model and then the second data set was processed test. When this data set was processed in our model, we achieved a success rate of over 91%. This rate is a very good result of detecting malicious url addresses. Your contribution with this work is significant in developing more effective methods for detecting harmful sites as internet usage increases, parallel use of artificial intelligence models makes detection of such sites more effective and potentially assist users in protecting from various types of cyber-attacks is targeted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
İnsansız Hava Araçlarında Dayanıklılık Elektrolif Çekimiyle Üretilen Nanoliflerin İnceliğini Etkileyen Parametrelerin Taguchi Yöntemi ile Optimizasyonu Öğrenen Organizasyon ve İnovasyon Koçluğu Modeli Kurumsal Çeviklik Yaklaşımı: Bir vaka çalışması Experimental Investigation of Acoustic Forcing on the Combustion Effect of Propane - Methane Mixtures The Effect of Injection Shaped Plastic Lock Mechanism on Mechanical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1