结构稳健协方差估计

A. Wiesel, Teng Zhang
{"title":"结构稳健协方差估计","authors":"A. Wiesel, Teng Zhang","doi":"10.1561/2000000053","DOIUrl":null,"url":null,"abstract":"We consider robust covariance estimation with an emphasis on Tyler’s M-estimator. This method provides accurate inference of an unknown covariance in non-standard settings, including heavy-tailed distributions and outlier contaminated scenarios. We begin with a survey of the estimator and its various derivations in the classical unconstrained settings. The latter rely on the theory of g-convex analysis which we briefly review. Building on this background, we enhance robust covariance estimation via g-convex regularization, and allow accurate inference using a smaller number of samples. We consider shrinkage, diagonal loading, and prior knowledge in the form of symmetry and Kronecker structures. We introduce these concepts to the world of robust covariance estimation, and demonstrate how to exploit them in a computationally and statistically efficient manner. A. Wiesel and T. Zhang. Structured Robust Covariance Estimation. Foundations and Trends © in Signal Processing, vol. 8, no. 3, pp. 127–216, 2014. DOI: 10.1561/2000000053. Full text available at: http://dx.doi.org/10.1561/2000000053","PeriodicalId":12340,"journal":{"name":"Found. Trends Signal Process.","volume":"22 1","pages":"127-216"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Structured Robust Covariance Estimation\",\"authors\":\"A. Wiesel, Teng Zhang\",\"doi\":\"10.1561/2000000053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider robust covariance estimation with an emphasis on Tyler’s M-estimator. This method provides accurate inference of an unknown covariance in non-standard settings, including heavy-tailed distributions and outlier contaminated scenarios. We begin with a survey of the estimator and its various derivations in the classical unconstrained settings. The latter rely on the theory of g-convex analysis which we briefly review. Building on this background, we enhance robust covariance estimation via g-convex regularization, and allow accurate inference using a smaller number of samples. We consider shrinkage, diagonal loading, and prior knowledge in the form of symmetry and Kronecker structures. We introduce these concepts to the world of robust covariance estimation, and demonstrate how to exploit them in a computationally and statistically efficient manner. A. Wiesel and T. Zhang. Structured Robust Covariance Estimation. Foundations and Trends © in Signal Processing, vol. 8, no. 3, pp. 127–216, 2014. DOI: 10.1561/2000000053. Full text available at: http://dx.doi.org/10.1561/2000000053\",\"PeriodicalId\":12340,\"journal\":{\"name\":\"Found. Trends Signal Process.\",\"volume\":\"22 1\",\"pages\":\"127-216\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Found. Trends Signal Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/2000000053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2000000053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

我们考虑稳健协方差估计,重点是泰勒的m估计。该方法在非标准设置中提供了未知协方差的准确推断,包括重尾分布和离群值污染场景。我们首先概述了经典无约束条件下的估计量及其各种推导。后者依赖于我们简要回顾的g-凸分析理论。在此背景下,我们通过g-凸正则化增强了鲁棒协方差估计,并允许使用更少的样本进行准确的推断。我们考虑收缩、对角线加载和对称和克罗内克结构形式的先验知识。我们将这些概念引入稳健协方差估计的世界,并演示如何以计算和统计有效的方式利用它们。A. Wiesel和T. Zhang。结构稳健协方差估计。基础与趋势©in Signal Processing, vol. 8, no. 5。3,第127-216页,2014。DOI: 10.1561 / 2000000053。全文可在:http://dx.doi.org/10.1561/2000000053
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structured Robust Covariance Estimation
We consider robust covariance estimation with an emphasis on Tyler’s M-estimator. This method provides accurate inference of an unknown covariance in non-standard settings, including heavy-tailed distributions and outlier contaminated scenarios. We begin with a survey of the estimator and its various derivations in the classical unconstrained settings. The latter rely on the theory of g-convex analysis which we briefly review. Building on this background, we enhance robust covariance estimation via g-convex regularization, and allow accurate inference using a smaller number of samples. We consider shrinkage, diagonal loading, and prior knowledge in the form of symmetry and Kronecker structures. We introduce these concepts to the world of robust covariance estimation, and demonstrate how to exploit them in a computationally and statistically efficient manner. A. Wiesel and T. Zhang. Structured Robust Covariance Estimation. Foundations and Trends © in Signal Processing, vol. 8, no. 3, pp. 127–216, 2014. DOI: 10.1561/2000000053. Full text available at: http://dx.doi.org/10.1561/2000000053
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalizing Graph Signal Processing: High Dimensional Spaces, Models and Structures An Introduction to Quantum Machine Learning for Engineers Signal Decomposition Using Masked Proximal Operators Online Component Analysis, Architectures and Applications Wireless for Machine Learning: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1