用钢纤维和丁苯橡胶胶乳增强再生混凝土的强度和耐久性

G. Awchat, Gopal Dhanjode
{"title":"用钢纤维和丁苯橡胶胶乳增强再生混凝土的强度和耐久性","authors":"G. Awchat, Gopal Dhanjode","doi":"10.4028/www.scientific.net/AEF.44.1","DOIUrl":null,"url":null,"abstract":"Demolition of any structure is costly, and simultaneously there is non-accessibility of land or disposal sites in nearby areas. Recycling such demolished concrete material and converting it into an appropriate size of aggregates can be further used for the following construction cycle. Prior exploration showed utilization of Steel Fibers (SF) and Styrene Butadiene Rubber (SBR) latex in Recycled Concrete (RC) independently for various strength and durability improvements. This experimental work cast RC as M25 & M40 grade to satisfy reinforced concrete and rigid concrete pavement concrete demand. Total 132 cubes, 198 cylinders, and 198 beams of Normal Concrete (NC), RC, and RC reinforced by SF with SBR latex cast and termed as Polymer Modified Steel Fiber Reinforced Recycled Concrete (PMSFRRC). The objective was to evaluate the properties due to SF and SBR latex blending and obtaining the optimum dosages of SF and SBR latex. A strength and durability study was carried out to find out cube compressive strength, indirect tensile strength, flexural strength, chloride attack, and sulfate attack. The concrete was modified with the SBR latex dosage range of 2.5% –7.5% by cement weight. SF was added as 0.5% – 1.5% by concrete mix volume at the average length of 25 mm and 0.5 mm in diameter. Experimental findings of PMSFRRC for grade M25 with SF 1% volume fraction of concrete and SBR latex 5% of cement weight improve NC in indirect tensile strength by 9.93% and 8.58%, flexural strength by 10.01% and 8.99% at 28 and 91 days, respectively. Similarly, there was an enhancement in indirect tensile strength by 13.18 % and 11.11 % and flexural strength by 12.88 % and 10.78 % at 28 and 91 days, respectively, for PMSFRRC of grade M40 compared to NC. Durability analysis shows that a combined dosage of SF 1.5% volume of concrete mix and SBR latex 7.5% of cement weight seemed to be excellent concrete additives for good resistance to acid and sulfate attack for both mixtures. The results exhibited improved hardened properties of modified concrete due to the combined addition of SF and SBR latex, improved cracking resistance, flexure resistance, and reduced acid and sulfate attack rate into the specimens. The study also demonstrated an effective way of preparing sustainable concrete with SF and SBR latex to improve strength and durability.","PeriodicalId":7184,"journal":{"name":"Advanced Engineering Forum","volume":"35 1","pages":"1 - 16"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Strength and Durability of Recycled Concrete Strengthened with Steel Fibers and Styrene Butadiene Rubber Latex\",\"authors\":\"G. Awchat, Gopal Dhanjode\",\"doi\":\"10.4028/www.scientific.net/AEF.44.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demolition of any structure is costly, and simultaneously there is non-accessibility of land or disposal sites in nearby areas. Recycling such demolished concrete material and converting it into an appropriate size of aggregates can be further used for the following construction cycle. Prior exploration showed utilization of Steel Fibers (SF) and Styrene Butadiene Rubber (SBR) latex in Recycled Concrete (RC) independently for various strength and durability improvements. This experimental work cast RC as M25 & M40 grade to satisfy reinforced concrete and rigid concrete pavement concrete demand. Total 132 cubes, 198 cylinders, and 198 beams of Normal Concrete (NC), RC, and RC reinforced by SF with SBR latex cast and termed as Polymer Modified Steel Fiber Reinforced Recycled Concrete (PMSFRRC). The objective was to evaluate the properties due to SF and SBR latex blending and obtaining the optimum dosages of SF and SBR latex. A strength and durability study was carried out to find out cube compressive strength, indirect tensile strength, flexural strength, chloride attack, and sulfate attack. The concrete was modified with the SBR latex dosage range of 2.5% –7.5% by cement weight. SF was added as 0.5% – 1.5% by concrete mix volume at the average length of 25 mm and 0.5 mm in diameter. Experimental findings of PMSFRRC for grade M25 with SF 1% volume fraction of concrete and SBR latex 5% of cement weight improve NC in indirect tensile strength by 9.93% and 8.58%, flexural strength by 10.01% and 8.99% at 28 and 91 days, respectively. Similarly, there was an enhancement in indirect tensile strength by 13.18 % and 11.11 % and flexural strength by 12.88 % and 10.78 % at 28 and 91 days, respectively, for PMSFRRC of grade M40 compared to NC. Durability analysis shows that a combined dosage of SF 1.5% volume of concrete mix and SBR latex 7.5% of cement weight seemed to be excellent concrete additives for good resistance to acid and sulfate attack for both mixtures. The results exhibited improved hardened properties of modified concrete due to the combined addition of SF and SBR latex, improved cracking resistance, flexure resistance, and reduced acid and sulfate attack rate into the specimens. The study also demonstrated an effective way of preparing sustainable concrete with SF and SBR latex to improve strength and durability.\",\"PeriodicalId\":7184,\"journal\":{\"name\":\"Advanced Engineering Forum\",\"volume\":\"35 1\",\"pages\":\"1 - 16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/AEF.44.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/AEF.44.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

拆除任何结构都是昂贵的,同时,附近地区的土地或处置场地也无法进入。回收这些拆卸的混凝土材料,并将其转化为适当尺寸的集料,可进一步用于下一个施工周期。先前的研究表明,钢纤维(SF)和丁苯橡胶(SBR)乳胶分别用于再生混凝土(RC)的各种强度和耐久性的提高。本试验按M25、M40级浇筑钢筋混凝土,以满足钢筋混凝土和刚性混凝土路面混凝土的要求。共有132个立方体,198个圆柱体和198根普通混凝土(NC), RC和用SBR乳胶浇铸的SF增强的RC,称为聚合物改性钢纤维增强再生混凝土(PMSFRRC)。目的是评价顺丰乳胶和SBR乳胶共混后的性能,并获得顺丰乳胶和SBR乳胶的最佳用量。进行了强度和耐久性研究,以确定立方体抗压强度、间接抗拉强度、弯曲强度、氯化物侵蚀和硫酸盐侵蚀。SBR胶乳的掺量为水泥质量比的2.5% ~ 7.5%。SF在平均长度为25mm,直径为0.5 mm时按混凝土掺量的0.5% ~ 1.5%添加。试验结果表明,当混凝土体积分数为SF的1%、水泥重量为SBR胶乳的5%时,M25级PMSFRRC在28和91天的间接抗拉强度分别提高了9.93%和8.58%,抗弯强度分别提高了10.01%和8.99%。同样,与NC相比,M40级PMSFRRC在28天和91天的间接抗拉强度分别提高了13.18%和11.11%,弯曲强度分别提高了12.88%和10.78%。耐久性分析表明,SF用量为混凝土体积的1.5%,SBR胶乳用量为水泥重量的7.5%,两种混凝土掺量均具有良好的抗酸、抗硫酸盐侵蚀性能。结果表明,SF和SBR胶乳的掺入改善了改性混凝土的硬化性能,提高了混凝土的抗裂性和抗弯性,降低了酸和硫酸盐对试件的侵蚀率。研究还证明了用SF和SBR胶乳制备可持续混凝土以提高强度和耐久性的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strength and Durability of Recycled Concrete Strengthened with Steel Fibers and Styrene Butadiene Rubber Latex
Demolition of any structure is costly, and simultaneously there is non-accessibility of land or disposal sites in nearby areas. Recycling such demolished concrete material and converting it into an appropriate size of aggregates can be further used for the following construction cycle. Prior exploration showed utilization of Steel Fibers (SF) and Styrene Butadiene Rubber (SBR) latex in Recycled Concrete (RC) independently for various strength and durability improvements. This experimental work cast RC as M25 & M40 grade to satisfy reinforced concrete and rigid concrete pavement concrete demand. Total 132 cubes, 198 cylinders, and 198 beams of Normal Concrete (NC), RC, and RC reinforced by SF with SBR latex cast and termed as Polymer Modified Steel Fiber Reinforced Recycled Concrete (PMSFRRC). The objective was to evaluate the properties due to SF and SBR latex blending and obtaining the optimum dosages of SF and SBR latex. A strength and durability study was carried out to find out cube compressive strength, indirect tensile strength, flexural strength, chloride attack, and sulfate attack. The concrete was modified with the SBR latex dosage range of 2.5% –7.5% by cement weight. SF was added as 0.5% – 1.5% by concrete mix volume at the average length of 25 mm and 0.5 mm in diameter. Experimental findings of PMSFRRC for grade M25 with SF 1% volume fraction of concrete and SBR latex 5% of cement weight improve NC in indirect tensile strength by 9.93% and 8.58%, flexural strength by 10.01% and 8.99% at 28 and 91 days, respectively. Similarly, there was an enhancement in indirect tensile strength by 13.18 % and 11.11 % and flexural strength by 12.88 % and 10.78 % at 28 and 91 days, respectively, for PMSFRRC of grade M40 compared to NC. Durability analysis shows that a combined dosage of SF 1.5% volume of concrete mix and SBR latex 7.5% of cement weight seemed to be excellent concrete additives for good resistance to acid and sulfate attack for both mixtures. The results exhibited improved hardened properties of modified concrete due to the combined addition of SF and SBR latex, improved cracking resistance, flexure resistance, and reduced acid and sulfate attack rate into the specimens. The study also demonstrated an effective way of preparing sustainable concrete with SF and SBR latex to improve strength and durability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implications of the Global Race to Net-Zero by 2050 for the Strategic Fleet of Coal-Fired Power Plants in SADC Optimum Design of Mix Ratio of Premixed Iron Tailings Mortar Based on Response Surface Method Evaluation and Comparison of Breach Parametric Model for Embankment Dams Numerical Modeling of Cantilever Retaining Wall Using EPS Geofoam An Investigation of the Mechanical and Durability Properties of Hollow Concrete Blocks Made with Copper Mine Tailings as a Partial Cement Replacement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1