硅量子点增强MoS2单层的光响应性

Minseon Gu, Keun Wook Lee, Beomjin Park, Beom Soo Joo, Young Jun Chang, Dong-Wook Park, Moonsup Han
{"title":"硅量子点增强MoS2单层的光响应性","authors":"Minseon Gu, Keun Wook Lee, Beomjin Park, Beom Soo Joo, Young Jun Chang, Dong-Wook Park, Moonsup Han","doi":"10.1002/pssr.202300220","DOIUrl":null,"url":null,"abstract":"Hybrid 2D/0D structures with various 2D materials and 0D quantum dots (QDs) have been studied to overcome the limitations of 2D materials. In this work, a hybrid structure with MoS2 and silicon quantum dots (Si QDs) as a photodetector is developed. The I–V transfer characteristics show a threshold voltage shift after decorating Si QDs on MoS2, which results from an n‐type doping effect to the MoS2 channel from the Si QDs. The field‐effect mobility of the MoS2/Si QDs device is increased by ≈5.8 times compared with that of the bare MoS2 device. It is understood that the mobility enhancement is attributed to the surface defect passivation of MoS2 at the interface with Si QDs. It is observed that the photoresponsivity of the MoS2/Si QDs structure is improved by ≈7.7 times compared with that of the bare MoS2 device under 500 nm illumination. Additionally, it is observed that the photoluminescence (PL) intensity of MoS2 is increased about 4.5 times after decoration of Si QDs. The band alignment as type I at the interface between the Si QDs and MoS2 is interpreted. The mobility enhancement and the photoexcited charge transfer (CT) between the MoS2 and the Si QDs due to the illumination lead to enhancing the photoresponsivity of the MoS2/Si QDs hybrid structure.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoresponsivity Enhancement of Monolayer MoS2 by Silicon Quantum Dots\",\"authors\":\"Minseon Gu, Keun Wook Lee, Beomjin Park, Beom Soo Joo, Young Jun Chang, Dong-Wook Park, Moonsup Han\",\"doi\":\"10.1002/pssr.202300220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid 2D/0D structures with various 2D materials and 0D quantum dots (QDs) have been studied to overcome the limitations of 2D materials. In this work, a hybrid structure with MoS2 and silicon quantum dots (Si QDs) as a photodetector is developed. The I–V transfer characteristics show a threshold voltage shift after decorating Si QDs on MoS2, which results from an n‐type doping effect to the MoS2 channel from the Si QDs. The field‐effect mobility of the MoS2/Si QDs device is increased by ≈5.8 times compared with that of the bare MoS2 device. It is understood that the mobility enhancement is attributed to the surface defect passivation of MoS2 at the interface with Si QDs. It is observed that the photoresponsivity of the MoS2/Si QDs structure is improved by ≈7.7 times compared with that of the bare MoS2 device under 500 nm illumination. Additionally, it is observed that the photoluminescence (PL) intensity of MoS2 is increased about 4.5 times after decoration of Si QDs. The band alignment as type I at the interface between the Si QDs and MoS2 is interpreted. The mobility enhancement and the photoexcited charge transfer (CT) between the MoS2 and the Si QDs due to the illumination lead to enhancing the photoresponsivity of the MoS2/Si QDs hybrid structure.\",\"PeriodicalId\":20059,\"journal\":{\"name\":\"physica status solidi (RRL) – Rapid Research Letters\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"physica status solidi (RRL) – Rapid Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssr.202300220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (RRL) – Rapid Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssr.202300220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了克服2D材料的局限性,研究了多种2D材料和0D量子点(QDs)的混合2D/0D结构。在这项工作中,开发了一种以二硫化钼和硅量子点(Si QDs)作为光电探测器的混合结构。在MoS2上修饰Si量子点后,I-V转移特性显示出阈值电压偏移,这是由于Si量子点对MoS2通道的n型掺杂效应所致。MoS2/Si量子点器件的场效应迁移率比裸MoS2器件提高了约5.8倍。迁移率的增强归因于MoS2与Si量子点界面处的表面缺陷钝化。结果表明,在500 nm光照下,MoS2/Si量子点结构的光响应性比裸MoS2器件提高了约7.7倍。另外,经过Si量子点修饰后,MoS2的光致发光强度提高了约4.5倍。在Si量子点和MoS2之间的界面处,波段对准为I型。光照增强了MoS2和Si量子点之间的迁移率和光激发电荷转移(CT),从而提高了MoS2/Si量子点杂化结构的光响应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photoresponsivity Enhancement of Monolayer MoS2 by Silicon Quantum Dots
Hybrid 2D/0D structures with various 2D materials and 0D quantum dots (QDs) have been studied to overcome the limitations of 2D materials. In this work, a hybrid structure with MoS2 and silicon quantum dots (Si QDs) as a photodetector is developed. The I–V transfer characteristics show a threshold voltage shift after decorating Si QDs on MoS2, which results from an n‐type doping effect to the MoS2 channel from the Si QDs. The field‐effect mobility of the MoS2/Si QDs device is increased by ≈5.8 times compared with that of the bare MoS2 device. It is understood that the mobility enhancement is attributed to the surface defect passivation of MoS2 at the interface with Si QDs. It is observed that the photoresponsivity of the MoS2/Si QDs structure is improved by ≈7.7 times compared with that of the bare MoS2 device under 500 nm illumination. Additionally, it is observed that the photoluminescence (PL) intensity of MoS2 is increased about 4.5 times after decoration of Si QDs. The band alignment as type I at the interface between the Si QDs and MoS2 is interpreted. The mobility enhancement and the photoexcited charge transfer (CT) between the MoS2 and the Si QDs due to the illumination lead to enhancing the photoresponsivity of the MoS2/Si QDs hybrid structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
InGaN/GaN Hybrid‐Nanostructure Light Emitting Diodes with Emission Wavelength Green and Beyond TiO2‐Based Schottky Diodes as Bidirectional Switches for Bipolar Resistive Memories Electronic, transport and optical properties of potential transparent conductive material Rb2Pb2O3 Low‐threshold Amplified Spontaneous Emission of Dion‐Jacobson Phase Perovskite Films Achieved by Tuning Diamine Cation Size Characteristics of Vertical Transistors on a GaN Substrate Fabricated via Na‐flux Method and Enlargement of the Substrate Surpassing 6 Inches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1