从天然稻壳中提取纳米纤维素

I. Hossain, Humayra Zaman, Taslima Rahman
{"title":"从天然稻壳中提取纳米纤维素","authors":"I. Hossain, Humayra Zaman, Taslima Rahman","doi":"10.3329/CERB.V20I1.36926","DOIUrl":null,"url":null,"abstract":"Nanocellulose has been in numerous applications and can be obtained from bioresources. This work demonstrates the derivation of nanocellulose from an alternative option i.e. rice husk. The processed rice husk was refined by chemical and mechanical treatments. Nanocellulose was subsequently derived from the refined rice husk through acid hydrolysis followed by centrifugation, dialysis and ultrasonic treatment. Scanning Electron Microscopy ensured the nanoscale diameter while Fourier Transformed InfraRed Spectroscopy confirmed the removal of noncellulosic materials. It is therefore proposed that the native rice husk can also be utilized for manufacturing nanocellulose reducing its adverse environmental impacts.Chemical Engineering Research Bulletin 20(2018) 19-22","PeriodicalId":9756,"journal":{"name":"Chemical Engineering Research Bulletin","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Derivation of Nanocellulose from Native Rice Husk\",\"authors\":\"I. Hossain, Humayra Zaman, Taslima Rahman\",\"doi\":\"10.3329/CERB.V20I1.36926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanocellulose has been in numerous applications and can be obtained from bioresources. This work demonstrates the derivation of nanocellulose from an alternative option i.e. rice husk. The processed rice husk was refined by chemical and mechanical treatments. Nanocellulose was subsequently derived from the refined rice husk through acid hydrolysis followed by centrifugation, dialysis and ultrasonic treatment. Scanning Electron Microscopy ensured the nanoscale diameter while Fourier Transformed InfraRed Spectroscopy confirmed the removal of noncellulosic materials. It is therefore proposed that the native rice husk can also be utilized for manufacturing nanocellulose reducing its adverse environmental impacts.Chemical Engineering Research Bulletin 20(2018) 19-22\",\"PeriodicalId\":9756,\"journal\":{\"name\":\"Chemical Engineering Research Bulletin\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Research Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/CERB.V20I1.36926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/CERB.V20I1.36926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

纳米纤维素有许多应用,可以从生物资源中获得。这项工作证明了纳米纤维素的衍生,从另一种选择,即稻壳。加工后的稻壳经化学和机械处理精制而成。以精制稻壳为原料,经酸水解、离心、透析、超声处理得到纳米纤维素。扫描电子显微镜确保了纳米级的直径,而傅里叶变换红外光谱证实了非纤维素材料的去除。因此,我们建议利用天然稻壳来制造纳米纤维素,减少其对环境的不利影响。化工研究通报20(2018)19-22
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Derivation of Nanocellulose from Native Rice Husk
Nanocellulose has been in numerous applications and can be obtained from bioresources. This work demonstrates the derivation of nanocellulose from an alternative option i.e. rice husk. The processed rice husk was refined by chemical and mechanical treatments. Nanocellulose was subsequently derived from the refined rice husk through acid hydrolysis followed by centrifugation, dialysis and ultrasonic treatment. Scanning Electron Microscopy ensured the nanoscale diameter while Fourier Transformed InfraRed Spectroscopy confirmed the removal of noncellulosic materials. It is therefore proposed that the native rice husk can also be utilized for manufacturing nanocellulose reducing its adverse environmental impacts.Chemical Engineering Research Bulletin 20(2018) 19-22
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical and Economic Aspects of Reusing Textile Effluent as Process Water: A Case Study of Denim Washing Factory Shahjalal Fertilizer Company Limited (SFCL): in Retrospect Preparationand Physico-Chemical Properties Evaluation of Biodiesel from Pithraj (Aphanamixis Polystachya)Seeds available in Bangladesh Study of Fire Growth Behavior in a Residential Apartment using Fire Dynamic Simulator Production and Performance Evaluation of Noble Fire Extinguishing Foam Suspensions Using Locally Available and Environmentally Friendly Natural Mineral Raw Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1