Sarah Dillis, A. Van Ham-Meert, Peter Leeming, A. Shortland, Gela Gobejishvili, Mikheil Abramishvili, P. Degryse
{"title":"锑作为古代金属和玻璃制造的原料:用同位素分析确定格鲁吉亚LBA金属Sb的来源","authors":"Sarah Dillis, A. Van Ham-Meert, Peter Leeming, A. Shortland, Gela Gobejishvili, Mikheil Abramishvili, P. Degryse","doi":"10.1080/20548923.2019.1681138","DOIUrl":null,"url":null,"abstract":"ABSTRACT Sb was frequently used as a raw material, both in ancient glass-making (as an opacifier and decolouriser) and metallurgy (either as an alloying element or as a pure metal). Despite this ubiquity, antimony production has only occasionally been studied and questions concerning its provenance are still not satisfactorily answered. This study evaluates the suitability of Sb isotope analysis for provenance determination purposes, as experiments under lab conditions have revealed fractionation occurring during redox processes in oxidising stibnites and in making opacified glasses. The results of this paper help to evaluate the possible influence of the pyrotechnological processes on the antimony isotope composition of glass artefacts. This paper focuses on the Caucasus as case study by applying mineralogical, geochemical and isotopic analysis to Georgian ores (mainly from the Racha-Lechkumi district) and Late Bronze Age (LBA; 15th–10th century BCE) metallic Sb objects found at the sites of Brili and Chalpiragorebi. GRAPHICAL ABSTRACT","PeriodicalId":21858,"journal":{"name":"STAR: Science & Technology of Archaeological Research","volume":"32 1","pages":"98 - 112"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Antimony as a raw material in ancient metal and glass making: provenancing Georgian LBA metallic Sb by isotope analysis\",\"authors\":\"Sarah Dillis, A. Van Ham-Meert, Peter Leeming, A. Shortland, Gela Gobejishvili, Mikheil Abramishvili, P. Degryse\",\"doi\":\"10.1080/20548923.2019.1681138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Sb was frequently used as a raw material, both in ancient glass-making (as an opacifier and decolouriser) and metallurgy (either as an alloying element or as a pure metal). Despite this ubiquity, antimony production has only occasionally been studied and questions concerning its provenance are still not satisfactorily answered. This study evaluates the suitability of Sb isotope analysis for provenance determination purposes, as experiments under lab conditions have revealed fractionation occurring during redox processes in oxidising stibnites and in making opacified glasses. The results of this paper help to evaluate the possible influence of the pyrotechnological processes on the antimony isotope composition of glass artefacts. This paper focuses on the Caucasus as case study by applying mineralogical, geochemical and isotopic analysis to Georgian ores (mainly from the Racha-Lechkumi district) and Late Bronze Age (LBA; 15th–10th century BCE) metallic Sb objects found at the sites of Brili and Chalpiragorebi. GRAPHICAL ABSTRACT\",\"PeriodicalId\":21858,\"journal\":{\"name\":\"STAR: Science & Technology of Archaeological Research\",\"volume\":\"32 1\",\"pages\":\"98 - 112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"STAR: Science & Technology of Archaeological Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20548923.2019.1681138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"STAR: Science & Technology of Archaeological Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20548923.2019.1681138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Antimony as a raw material in ancient metal and glass making: provenancing Georgian LBA metallic Sb by isotope analysis
ABSTRACT Sb was frequently used as a raw material, both in ancient glass-making (as an opacifier and decolouriser) and metallurgy (either as an alloying element or as a pure metal). Despite this ubiquity, antimony production has only occasionally been studied and questions concerning its provenance are still not satisfactorily answered. This study evaluates the suitability of Sb isotope analysis for provenance determination purposes, as experiments under lab conditions have revealed fractionation occurring during redox processes in oxidising stibnites and in making opacified glasses. The results of this paper help to evaluate the possible influence of the pyrotechnological processes on the antimony isotope composition of glass artefacts. This paper focuses on the Caucasus as case study by applying mineralogical, geochemical and isotopic analysis to Georgian ores (mainly from the Racha-Lechkumi district) and Late Bronze Age (LBA; 15th–10th century BCE) metallic Sb objects found at the sites of Brili and Chalpiragorebi. GRAPHICAL ABSTRACT