基于车辆轨迹的多层次驾驶安全评估风险框架

IF 0.8 4区 工程技术 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY Promet-Traffic & Transportation Pub Date : 2022-12-02 DOI:10.7307/ptt.v34i6.4154
Xiao-xia Xiong, Yu He, Xiang Gao, Yeling Zhao
{"title":"基于车辆轨迹的多层次驾驶安全评估风险框架","authors":"Xiao-xia Xiong, Yu He, Xiang Gao, Yeling Zhao","doi":"10.7307/ptt.v34i6.4154","DOIUrl":null,"url":null,"abstract":"Few existing research studies have explored the relationship of road section level, local area level and vehicle level risks within the highway traffic safety system, which can be important to the formation of an effective risk event prediction. This paper proposes a framework of multi-level risks described by a set of carefully selected or designed indicators. The interrelationship among these latent multi-level risks and their observable indicators are explored based on vehicle trajectory data using the structural equation model (SEM). The results show that there exists significant positive correlation between the latent risk constructs that each have adequate convergent validity, and it is difficult to completely separate the local traffic level risk from both the road section level risk and vehicle level risk. The local and road level indicators are also found to be of more importance when risk prediction time gets earlier based on feature importance scoring of the LightGBM. The proposed conceptual multi-level indicator based latent risk framework generally fits with the observed results and emphasises the importance of including multi-level indicators for risk event prediction in the future.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Multi-Level Risk Framework for Driving Safety Assessment Based on Vehicle Trajectory\",\"authors\":\"Xiao-xia Xiong, Yu He, Xiang Gao, Yeling Zhao\",\"doi\":\"10.7307/ptt.v34i6.4154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Few existing research studies have explored the relationship of road section level, local area level and vehicle level risks within the highway traffic safety system, which can be important to the formation of an effective risk event prediction. This paper proposes a framework of multi-level risks described by a set of carefully selected or designed indicators. The interrelationship among these latent multi-level risks and their observable indicators are explored based on vehicle trajectory data using the structural equation model (SEM). The results show that there exists significant positive correlation between the latent risk constructs that each have adequate convergent validity, and it is difficult to completely separate the local traffic level risk from both the road section level risk and vehicle level risk. The local and road level indicators are also found to be of more importance when risk prediction time gets earlier based on feature importance scoring of the LightGBM. The proposed conceptual multi-level indicator based latent risk framework generally fits with the observed results and emphasises the importance of including multi-level indicators for risk event prediction in the future.\",\"PeriodicalId\":54546,\"journal\":{\"name\":\"Promet-Traffic & Transportation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Promet-Traffic & Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.7307/ptt.v34i6.4154\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7307/ptt.v34i6.4154","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

现有的研究很少探讨公路交通安全系统中路段级、局部区域级和车辆级风险之间的关系,这对于形成有效的风险事件预测具有重要意义。本文提出了一个由一系列精心挑选或设计的指标描述的多层次风险框架。基于车辆轨迹数据,利用结构方程模型(SEM)探讨了这些潜在多层次风险与其可观测指标之间的相互关系。结果表明,各潜在风险结构之间存在显著的正相关关系,且各潜在风险结构具有足够的收敛效度,难以将局部交通级别风险与路段级别风险和车辆级别风险完全分离。基于LightGBM特征重要性评分的风险预测时间越早,局部和道路水平指标越重要。提出的基于多级指标的潜在风险概念框架与观测结果基本吻合,并强调了将多级指标纳入未来风险事件预测的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-Level Risk Framework for Driving Safety Assessment Based on Vehicle Trajectory
Few existing research studies have explored the relationship of road section level, local area level and vehicle level risks within the highway traffic safety system, which can be important to the formation of an effective risk event prediction. This paper proposes a framework of multi-level risks described by a set of carefully selected or designed indicators. The interrelationship among these latent multi-level risks and their observable indicators are explored based on vehicle trajectory data using the structural equation model (SEM). The results show that there exists significant positive correlation between the latent risk constructs that each have adequate convergent validity, and it is difficult to completely separate the local traffic level risk from both the road section level risk and vehicle level risk. The local and road level indicators are also found to be of more importance when risk prediction time gets earlier based on feature importance scoring of the LightGBM. The proposed conceptual multi-level indicator based latent risk framework generally fits with the observed results and emphasises the importance of including multi-level indicators for risk event prediction in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Promet-Traffic & Transportation
Promet-Traffic & Transportation 工程技术-运输科技
CiteScore
1.90
自引率
20.00%
发文量
62
审稿时长
3 months
期刊介绍: This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology. The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee. The received papers are subject to peer review in accordance with the recommendations for international scientific journals. The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering. The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.
期刊最新文献
Selecting the Flexible Last-Mile Delivery Models Using Multicriteria Decision-Making Passenger Queuing Analysis Method of Security Inspection and Ticket-Checking Area without Archway Metal Detector in Metro Stations Environmental Sustainability and Freight Transport Performance in the EU – An Autoregressive Conditional Heteroscedasticity (ARCH) Model Analysis Use of Structural Equation Modelling and Neural Network to Analyse Shared Parking Choice Behaviour Prediction of Electric Vehicle Energy Consumption in an Intelligent and Connected Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1