L. Wan, H. Zhang, J. G. Huang, G. Zhang, L. Kwek, J. Fitzsimons, Y. Chong, J. B. Gong, A. Szameit, X. Zhou, M. Yung, X. Jin, X. Su, W. Ser, W. Gao, A. Liu
{"title":"用机器学习确定可重构玻色子采样电路u矩阵的全参数","authors":"L. Wan, H. Zhang, J. G. Huang, G. Zhang, L. Kwek, J. Fitzsimons, Y. Chong, J. B. Gong, A. Szameit, X. Zhou, M. Yung, X. Jin, X. Su, W. Ser, W. Gao, A. Liu","doi":"10.1364/CLEO_AT.2018.JTH2A.18","DOIUrl":null,"url":null,"abstract":"A method of tuning a reconfigurable silicon photonic circuit into an arbitrary unitary operator with machine learning was proposed to bypass the traditional phase-voltage calibration process and make the prediction of applied heating voltage directly.","PeriodicalId":6498,"journal":{"name":"2018 Conference on Lasers and Electro-Optics (CLEO)","volume":"17 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determinating Full Parameters of U-Matrix for Reconfigurable Boson Sampling Circuits using Machine Learning\",\"authors\":\"L. Wan, H. Zhang, J. G. Huang, G. Zhang, L. Kwek, J. Fitzsimons, Y. Chong, J. B. Gong, A. Szameit, X. Zhou, M. Yung, X. Jin, X. Su, W. Ser, W. Gao, A. Liu\",\"doi\":\"10.1364/CLEO_AT.2018.JTH2A.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method of tuning a reconfigurable silicon photonic circuit into an arbitrary unitary operator with machine learning was proposed to bypass the traditional phase-voltage calibration process and make the prediction of applied heating voltage directly.\",\"PeriodicalId\":6498,\"journal\":{\"name\":\"2018 Conference on Lasers and Electro-Optics (CLEO)\",\"volume\":\"17 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Conference on Lasers and Electro-Optics (CLEO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/CLEO_AT.2018.JTH2A.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Lasers and Electro-Optics (CLEO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/CLEO_AT.2018.JTH2A.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Determinating Full Parameters of U-Matrix for Reconfigurable Boson Sampling Circuits using Machine Learning
A method of tuning a reconfigurable silicon photonic circuit into an arbitrary unitary operator with machine learning was proposed to bypass the traditional phase-voltage calibration process and make the prediction of applied heating voltage directly.