Juan Morales-García, A. Bueno-Crespo, Raquel Martínez-España, José M. Cecilia
{"title":"运行中的智能温室气候控制机器学习模型的数据驱动评估","authors":"Juan Morales-García, A. Bueno-Crespo, Raquel Martínez-España, José M. Cecilia","doi":"10.3233/ais-220441","DOIUrl":null,"url":null,"abstract":"Nowadays, human overpopulation is stressing our ecosystems in different ways, agriculture being a critical example as different predictions point towards food shortages in the near future. Accordingly, smart farming is becoming key to the optimization of natural resources so that different crops can be grown efficiently, consuming as few resources as possible. In particular, greenhouses have proved to be an effective way of producing a high volume of vegetables/fruits in a reduced space and within a short time span. Hence, optimizing greenhouse functioning results in less water use and nutrient consumption, less energy use, faster growth, and better product quality. In this article, we carry out an in-depth analysis of different machine learning (ML) models to improve climate control in smart greenhouses. As part of the analysis of the techniques we also considered 3 ways of pre-processing the data, as well as 12-hour and 24-hour forecasting. We focus on forecasting the indoor air temperature of an operational smart greenhouse, i.e. assessing the data anomalies that are inherently present in these environments due to the instability of IoT infrastructures. Several ML models are adapted to time series forecasting to provide an overview of these techniques and to find out which one performs better in this particular scenario. Our results show that, after statistically validating the results, the Random Forest Regression technique gives the best overall result with a mean absolute error of less than 1 degree Celsius.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"27 1","pages":"3-17"},"PeriodicalIF":1.8000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data-driven evaluation of machine learning models for climate control in operational smart greenhouses\",\"authors\":\"Juan Morales-García, A. Bueno-Crespo, Raquel Martínez-España, José M. Cecilia\",\"doi\":\"10.3233/ais-220441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, human overpopulation is stressing our ecosystems in different ways, agriculture being a critical example as different predictions point towards food shortages in the near future. Accordingly, smart farming is becoming key to the optimization of natural resources so that different crops can be grown efficiently, consuming as few resources as possible. In particular, greenhouses have proved to be an effective way of producing a high volume of vegetables/fruits in a reduced space and within a short time span. Hence, optimizing greenhouse functioning results in less water use and nutrient consumption, less energy use, faster growth, and better product quality. In this article, we carry out an in-depth analysis of different machine learning (ML) models to improve climate control in smart greenhouses. As part of the analysis of the techniques we also considered 3 ways of pre-processing the data, as well as 12-hour and 24-hour forecasting. We focus on forecasting the indoor air temperature of an operational smart greenhouse, i.e. assessing the data anomalies that are inherently present in these environments due to the instability of IoT infrastructures. Several ML models are adapted to time series forecasting to provide an overview of these techniques and to find out which one performs better in this particular scenario. Our results show that, after statistically validating the results, the Random Forest Regression technique gives the best overall result with a mean absolute error of less than 1 degree Celsius.\",\"PeriodicalId\":49316,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Smart Environments\",\"volume\":\"27 1\",\"pages\":\"3-17\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Smart Environments\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ais-220441\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ais-220441","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Data-driven evaluation of machine learning models for climate control in operational smart greenhouses
Nowadays, human overpopulation is stressing our ecosystems in different ways, agriculture being a critical example as different predictions point towards food shortages in the near future. Accordingly, smart farming is becoming key to the optimization of natural resources so that different crops can be grown efficiently, consuming as few resources as possible. In particular, greenhouses have proved to be an effective way of producing a high volume of vegetables/fruits in a reduced space and within a short time span. Hence, optimizing greenhouse functioning results in less water use and nutrient consumption, less energy use, faster growth, and better product quality. In this article, we carry out an in-depth analysis of different machine learning (ML) models to improve climate control in smart greenhouses. As part of the analysis of the techniques we also considered 3 ways of pre-processing the data, as well as 12-hour and 24-hour forecasting. We focus on forecasting the indoor air temperature of an operational smart greenhouse, i.e. assessing the data anomalies that are inherently present in these environments due to the instability of IoT infrastructures. Several ML models are adapted to time series forecasting to provide an overview of these techniques and to find out which one performs better in this particular scenario. Our results show that, after statistically validating the results, the Random Forest Regression technique gives the best overall result with a mean absolute error of less than 1 degree Celsius.
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.