{"title":"带缓冲时间的多目标班轮运输动态恢复行为","authors":"Xin Wen, Y. Ge, Yuqi Yin, M. Zhong","doi":"10.1680/jmaen.2021.005","DOIUrl":null,"url":null,"abstract":"This paper investigates the dynamic recovery policies for liner shipping service with the consideration of buffer time allocation and uncertainties. We aim to allocate the buffer time at the tactical level and then determine the optimal policy, including speed optimization strategy, port skipping and acceleration rate choice, for recovering from disruptions due to various uncertainties or random adverse events, which cause vessel delays. To achieve this, we attempt to obtain the optimal balance among economic, environmental and service-reliable objectives. A novel mathematical formulation is introduced to solve the robust vessel scheduling problem with short- and long-term decisions. Furthermore, we propose and test two heuristics to solve the proposed model. Experiments on the container liner shipping service show the validity of the model and some managerial insights are gained from them.","PeriodicalId":54575,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Maritime Engineering","volume":"95 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dynamic recovery actions in multi-objective liner shipping service with buffer times\",\"authors\":\"Xin Wen, Y. Ge, Yuqi Yin, M. Zhong\",\"doi\":\"10.1680/jmaen.2021.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the dynamic recovery policies for liner shipping service with the consideration of buffer time allocation and uncertainties. We aim to allocate the buffer time at the tactical level and then determine the optimal policy, including speed optimization strategy, port skipping and acceleration rate choice, for recovering from disruptions due to various uncertainties or random adverse events, which cause vessel delays. To achieve this, we attempt to obtain the optimal balance among economic, environmental and service-reliable objectives. A novel mathematical formulation is introduced to solve the robust vessel scheduling problem with short- and long-term decisions. Furthermore, we propose and test two heuristics to solve the proposed model. Experiments on the container liner shipping service show the validity of the model and some managerial insights are gained from them.\",\"PeriodicalId\":54575,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Maritime Engineering\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Maritime Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jmaen.2021.005\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Maritime Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jmaen.2021.005","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Dynamic recovery actions in multi-objective liner shipping service with buffer times
This paper investigates the dynamic recovery policies for liner shipping service with the consideration of buffer time allocation and uncertainties. We aim to allocate the buffer time at the tactical level and then determine the optimal policy, including speed optimization strategy, port skipping and acceleration rate choice, for recovering from disruptions due to various uncertainties or random adverse events, which cause vessel delays. To achieve this, we attempt to obtain the optimal balance among economic, environmental and service-reliable objectives. A novel mathematical formulation is introduced to solve the robust vessel scheduling problem with short- and long-term decisions. Furthermore, we propose and test two heuristics to solve the proposed model. Experiments on the container liner shipping service show the validity of the model and some managerial insights are gained from them.
期刊介绍:
Maritime Engineering publishes technical papers relevant to civil engineering in port, estuarine, coastal and offshore environments.
Relevant to consulting, client and contracting engineers as well as researchers and academics, the journal focuses on safe and sustainable engineering in the salt-water environment and comprises papers regarding management, planning, design, analysis, construction, operation, maintenance and applied research. The journal publishes papers and articles from industry and academia that conveys advanced research that those developing, designing or constructing schemes can begin to apply, as well as papers on good practices that others can learn from and utilise.