F. Belblidia, M. Gabr, J. Pittman, Abisheera Rajkumar
{"title":"回收高冲击聚苯乙烯:循环经济商业模式下的材料特性和再加工","authors":"F. Belblidia, M. Gabr, J. Pittman, Abisheera Rajkumar","doi":"10.1177/14777606231168653","DOIUrl":null,"url":null,"abstract":"An account is presented of successfully implemented Extended Producer Responsibility (EPR) with recycling to high value products, to help overcome barriers and generate confidence in moving towards Circular Economy (CE) business models. A template for organisations proposing to recycle a thermoplastic is provided by describing appropriate tests and considerations in implementing the recovery and re-use of high impact polystyrene (HIPS) based on a practical, industry case. Simulating the repeated 100% closed loop reprocessing of production scrap, original HIPS has been injection molded to produce tensile and impact test pieces, reground and reprocessed eight times. Assessing the present results together with literature, repeated recycling of production scrap is possible without the need for a remedial compounding step, or changes to processing parameters. Integral to the EPR model is recovery of plastic from returned end-of-life (EoL) products, and in relation to the in-use environment, studies of the effects of UV exposure on virgin material show that significant property degradation can occur. However, with indoor use, as in the present case, this is not seen. Within the CE business model it is desirable to use blends of recovered HIPS originating from different original resin manufacturers. Feeding dry blend regrind directly to the molding machine proved satisfactory, avoiding the need for a compounding/pelletizing step. As an outcome of this study, products are being successfully manufactured from 100% HIPS recovered from EoL products in an environmentally and economically positive CE plan.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"16 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recycling high impact polystyrene: Material properties and reprocessing in a circular economy business model\",\"authors\":\"F. Belblidia, M. Gabr, J. Pittman, Abisheera Rajkumar\",\"doi\":\"10.1177/14777606231168653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An account is presented of successfully implemented Extended Producer Responsibility (EPR) with recycling to high value products, to help overcome barriers and generate confidence in moving towards Circular Economy (CE) business models. A template for organisations proposing to recycle a thermoplastic is provided by describing appropriate tests and considerations in implementing the recovery and re-use of high impact polystyrene (HIPS) based on a practical, industry case. Simulating the repeated 100% closed loop reprocessing of production scrap, original HIPS has been injection molded to produce tensile and impact test pieces, reground and reprocessed eight times. Assessing the present results together with literature, repeated recycling of production scrap is possible without the need for a remedial compounding step, or changes to processing parameters. Integral to the EPR model is recovery of plastic from returned end-of-life (EoL) products, and in relation to the in-use environment, studies of the effects of UV exposure on virgin material show that significant property degradation can occur. However, with indoor use, as in the present case, this is not seen. Within the CE business model it is desirable to use blends of recovered HIPS originating from different original resin manufacturers. Feeding dry blend regrind directly to the molding machine proved satisfactory, avoiding the need for a compounding/pelletizing step. As an outcome of this study, products are being successfully manufactured from 100% HIPS recovered from EoL products in an environmentally and economically positive CE plan.\",\"PeriodicalId\":20860,\"journal\":{\"name\":\"Progress in Rubber Plastics and Recycling Technology\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Rubber Plastics and Recycling Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/14777606231168653\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Rubber Plastics and Recycling Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14777606231168653","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Recycling high impact polystyrene: Material properties and reprocessing in a circular economy business model
An account is presented of successfully implemented Extended Producer Responsibility (EPR) with recycling to high value products, to help overcome barriers and generate confidence in moving towards Circular Economy (CE) business models. A template for organisations proposing to recycle a thermoplastic is provided by describing appropriate tests and considerations in implementing the recovery and re-use of high impact polystyrene (HIPS) based on a practical, industry case. Simulating the repeated 100% closed loop reprocessing of production scrap, original HIPS has been injection molded to produce tensile and impact test pieces, reground and reprocessed eight times. Assessing the present results together with literature, repeated recycling of production scrap is possible without the need for a remedial compounding step, or changes to processing parameters. Integral to the EPR model is recovery of plastic from returned end-of-life (EoL) products, and in relation to the in-use environment, studies of the effects of UV exposure on virgin material show that significant property degradation can occur. However, with indoor use, as in the present case, this is not seen. Within the CE business model it is desirable to use blends of recovered HIPS originating from different original resin manufacturers. Feeding dry blend regrind directly to the molding machine proved satisfactory, avoiding the need for a compounding/pelletizing step. As an outcome of this study, products are being successfully manufactured from 100% HIPS recovered from EoL products in an environmentally and economically positive CE plan.
期刊介绍:
The journal aims to bridge the gap between research and development and the practical and commercial applications of polymers in a wide range of uses. Current developments and likely future trends are reviewed across key areas of the polymer industry, together with existing and potential opportunities for the innovative use of plastic and rubber products.