InferSpark:大规模的统计推断

Zhuoyue Zhao, Eric Lo, Kenny Q. Zhu, Chris Liu
{"title":"InferSpark:大规模的统计推断","authors":"Zhuoyue Zhao, Eric Lo, Kenny Q. Zhu, Chris Liu","doi":"10.1109/BIGCOMP.2019.8679482","DOIUrl":null,"url":null,"abstract":"The Apache Spark stack has enabled fast large-scale data processing. Despite a rich library of statistical models and inference algorithms, it does not give domain users the ability to develop their own models. The emergence of probabilistic programming languages has showed the promise of developing sophisticated probabilistic models in a succinct and programmatic way. These frameworks have the potential of automatically generating inference algorithms for the user defined models and answering various statistical queries about the model. It is a perfect time to unite these two great directions to produce a programmable big data analysis framework. We thus propose, InferSpark, a probabilistic programming framework on top of Apache Spark. Efficient statistical inference can be easily implemented on this framework and inference process can leverage the distributed main memory processing power of Spark. This framework makes statistical inference on big data possible and speed up the penetration of probabilistic programming into the data engineering domain.","PeriodicalId":93400,"journal":{"name":"... International Conference on Big Data and Smart Computing. International Conference on Big Data and Smart Computing","volume":"5 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"InferSpark: Statistical Inference at Scale\",\"authors\":\"Zhuoyue Zhao, Eric Lo, Kenny Q. Zhu, Chris Liu\",\"doi\":\"10.1109/BIGCOMP.2019.8679482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Apache Spark stack has enabled fast large-scale data processing. Despite a rich library of statistical models and inference algorithms, it does not give domain users the ability to develop their own models. The emergence of probabilistic programming languages has showed the promise of developing sophisticated probabilistic models in a succinct and programmatic way. These frameworks have the potential of automatically generating inference algorithms for the user defined models and answering various statistical queries about the model. It is a perfect time to unite these two great directions to produce a programmable big data analysis framework. We thus propose, InferSpark, a probabilistic programming framework on top of Apache Spark. Efficient statistical inference can be easily implemented on this framework and inference process can leverage the distributed main memory processing power of Spark. This framework makes statistical inference on big data possible and speed up the penetration of probabilistic programming into the data engineering domain.\",\"PeriodicalId\":93400,\"journal\":{\"name\":\"... International Conference on Big Data and Smart Computing. International Conference on Big Data and Smart Computing\",\"volume\":\"5 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... International Conference on Big Data and Smart Computing. International Conference on Big Data and Smart Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIGCOMP.2019.8679482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Conference on Big Data and Smart Computing. International Conference on Big Data and Smart Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIGCOMP.2019.8679482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

Apache Spark栈支持快速的大规模数据处理。尽管有丰富的统计模型和推理算法库,但它并没有给领域用户开发自己的模型的能力。概率编程语言的出现显示了以简洁和程序化的方式开发复杂概率模型的希望。这些框架具有为用户定义的模型自动生成推理算法和回答关于模型的各种统计查询的潜力。现在是将这两个伟大的方向结合起来,产生一个可编程的大数据分析框架的完美时机。因此,我们提出了一个基于Apache Spark的概率编程框架——InferSpark。在这个框架上可以很容易地实现高效的统计推理,推理过程可以利用Spark的分布式主内存处理能力。该框架使得对大数据的统计推断成为可能,并加速了概率编程在数据工程领域的渗透。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
InferSpark: Statistical Inference at Scale
The Apache Spark stack has enabled fast large-scale data processing. Despite a rich library of statistical models and inference algorithms, it does not give domain users the ability to develop their own models. The emergence of probabilistic programming languages has showed the promise of developing sophisticated probabilistic models in a succinct and programmatic way. These frameworks have the potential of automatically generating inference algorithms for the user defined models and answering various statistical queries about the model. It is a perfect time to unite these two great directions to produce a programmable big data analysis framework. We thus propose, InferSpark, a probabilistic programming framework on top of Apache Spark. Efficient statistical inference can be easily implemented on this framework and inference process can leverage the distributed main memory processing power of Spark. This framework makes statistical inference on big data possible and speed up the penetration of probabilistic programming into the data engineering domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Hadoop 3.x energy consumption through Energy Efficient Ethernet MP-Boost: Minipatch Boosting via Adaptive Feature and Observation Sampling. Minipatch Learning as Implicit Ridge-Like Regularization. Solid-State LiDAR based-SLAM: A Concise Review and Application Anhang B: Begriffe in der qualitativen Inhaltsanalyse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1