基于RBF和BP神经网络的容差模拟电路故障诊断

K. Mohammadi, A. Monfared, A. M. Nejad
{"title":"基于RBF和BP神经网络的容差模拟电路故障诊断","authors":"K. Mohammadi, A. Monfared, A. M. Nejad","doi":"10.1109/SCORED.2002.1033122","DOIUrl":null,"url":null,"abstract":"This paper presents a method for analog circuit fault diagnosis by using neural networks. This method exploits a DC approach for constructing a dictionary in fault diagnosis using the neural network's classification capability. Also, Radial Basis Function (RBF) and backward error propagation (BEP) networks are considered and compared for analog fault diagnosis. The primary focus of the paper is to provide robust diagnosis using a mechanism to deal with the problem of component tolerance and reduce testing time. Simulation results show that the radial basis function network with reasonable dimension has double precision in fault classification but its classification is local, while the backward error propagation network with reasonable dimension has single precision in fault classification but its classification is global.","PeriodicalId":6865,"journal":{"name":"2016 IEEE Student Conference on Research and Development (SCOReD)","volume":"4 1","pages":"317-321"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Fault diagnosis of analog circuits with tolerances by using RBF and BP neural networks\",\"authors\":\"K. Mohammadi, A. Monfared, A. M. Nejad\",\"doi\":\"10.1109/SCORED.2002.1033122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for analog circuit fault diagnosis by using neural networks. This method exploits a DC approach for constructing a dictionary in fault diagnosis using the neural network's classification capability. Also, Radial Basis Function (RBF) and backward error propagation (BEP) networks are considered and compared for analog fault diagnosis. The primary focus of the paper is to provide robust diagnosis using a mechanism to deal with the problem of component tolerance and reduce testing time. Simulation results show that the radial basis function network with reasonable dimension has double precision in fault classification but its classification is local, while the backward error propagation network with reasonable dimension has single precision in fault classification but its classification is global.\",\"PeriodicalId\":6865,\"journal\":{\"name\":\"2016 IEEE Student Conference on Research and Development (SCOReD)\",\"volume\":\"4 1\",\"pages\":\"317-321\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Student Conference on Research and Development (SCOReD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCORED.2002.1033122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Student Conference on Research and Development (SCOReD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCORED.2002.1033122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

提出了一种基于神经网络的模拟电路故障诊断方法。该方法利用神经网络的分类能力,利用DC方法构建故障诊断词典。同时,将径向基函数(RBF)和反向误差传播(BEP)网络用于模拟故障诊断进行了比较。本文的主要重点是利用一种机制来处理部件公差问题并缩短测试时间,从而提供鲁棒性诊断。仿真结果表明,具有合理维数的径向基函数网络在故障分类上具有双精度,但其分类是局部的;而具有合理维数的反向误差传播网络在故障分类上具有单精度,但其分类是全局的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault diagnosis of analog circuits with tolerances by using RBF and BP neural networks
This paper presents a method for analog circuit fault diagnosis by using neural networks. This method exploits a DC approach for constructing a dictionary in fault diagnosis using the neural network's classification capability. Also, Radial Basis Function (RBF) and backward error propagation (BEP) networks are considered and compared for analog fault diagnosis. The primary focus of the paper is to provide robust diagnosis using a mechanism to deal with the problem of component tolerance and reduce testing time. Simulation results show that the radial basis function network with reasonable dimension has double precision in fault classification but its classification is local, while the backward error propagation network with reasonable dimension has single precision in fault classification but its classification is global.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel pedestrian detection and tracking with boosted HOG classifiers and Kalman filter Advanced inter-cell interference management technologies in 5G wireless Heterogeneous Networks (HetNets) Intelligent automatic starting engine based on voice recognition system Development of algorithm to characterize flavonoids classes Effect of substrates temperature on structural and optical properties indium tin oxide prepared by RF magnetron sputtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1