{"title":"基于空间搜索和三级模型的c波段SAR图像水层提取","authors":"Bipin Chandran, C. Rao, P. Sridevi","doi":"10.1080/19475683.2021.1897675","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper describes a spatial search and a three-level model-based approach for automatic extraction of surface water layers from Sentinel-1 C-band SAR images at 10 m spatial resolution. The technique incorporates a connected component spatial search for segmenting low backscatter regions and uses the segmented image object for characterizing the segments. The water body is described here as a collection of different spatially connected segments. A three-level model is used to describe the connected segments of a water body in SAR data. Noise tolerance is achieved in this method by incorporating a speckle noise level into the model. The segmentation process further calculates contextual information which includes shadow estimated from DEM, polarization angle of the segment, and a boundary co-occurrence in both polarization to qualify the detected segments as a water body. The proposed method is found to have an accuracy of 94% in terms of f1 score. The algorithm, estimation of different parameters, and the results obtained in selected regions are explained in this paper.","PeriodicalId":46270,"journal":{"name":"Annals of GIS","volume":"31 1","pages":"163 - 176"},"PeriodicalIF":2.7000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial search and a three level model based water layer extraction from C-band SAR image\",\"authors\":\"Bipin Chandran, C. Rao, P. Sridevi\",\"doi\":\"10.1080/19475683.2021.1897675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper describes a spatial search and a three-level model-based approach for automatic extraction of surface water layers from Sentinel-1 C-band SAR images at 10 m spatial resolution. The technique incorporates a connected component spatial search for segmenting low backscatter regions and uses the segmented image object for characterizing the segments. The water body is described here as a collection of different spatially connected segments. A three-level model is used to describe the connected segments of a water body in SAR data. Noise tolerance is achieved in this method by incorporating a speckle noise level into the model. The segmentation process further calculates contextual information which includes shadow estimated from DEM, polarization angle of the segment, and a boundary co-occurrence in both polarization to qualify the detected segments as a water body. The proposed method is found to have an accuracy of 94% in terms of f1 score. The algorithm, estimation of different parameters, and the results obtained in selected regions are explained in this paper.\",\"PeriodicalId\":46270,\"journal\":{\"name\":\"Annals of GIS\",\"volume\":\"31 1\",\"pages\":\"163 - 176\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of GIS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19475683.2021.1897675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of GIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475683.2021.1897675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
Spatial search and a three level model based water layer extraction from C-band SAR image
ABSTRACT This paper describes a spatial search and a three-level model-based approach for automatic extraction of surface water layers from Sentinel-1 C-band SAR images at 10 m spatial resolution. The technique incorporates a connected component spatial search for segmenting low backscatter regions and uses the segmented image object for characterizing the segments. The water body is described here as a collection of different spatially connected segments. A three-level model is used to describe the connected segments of a water body in SAR data. Noise tolerance is achieved in this method by incorporating a speckle noise level into the model. The segmentation process further calculates contextual information which includes shadow estimated from DEM, polarization angle of the segment, and a boundary co-occurrence in both polarization to qualify the detected segments as a water body. The proposed method is found to have an accuracy of 94% in terms of f1 score. The algorithm, estimation of different parameters, and the results obtained in selected regions are explained in this paper.