{"title":"从三次照度数据确定标量照度。第2部分:在真实照明环境中的测试和提高其准确性的方法","authors":"L. Xia, Y. Gu, X. Liu, T. Zhang, R. Xu","doi":"10.1177/14771535221086667","DOIUrl":null,"url":null,"abstract":"Scalar illuminance, which describes the constant illumination from all directions, is an important indicator of the abundance of light for a lit object and the adequacy of illumination perceived. This paper proposes a more reliable method to recover scalar illuminance based on tests in natural complex lighting environments. The performance of Cuttle’s Approach 1, Mangkuto’s Approach 2 and Approach 3, together with Xia et al.’s potential Approach 4, were tested under a total of 610 high dynamic range (HDR) panoramic maps of real scenes. The relationships between predicted scalar illuminance and normalised diffuseness levels were checked. The results indicate that the potential Approach 4 is more robust to the cubic meter’s postures, and the predicted scalar illuminance has a regular relationship with normalised diffuseness levels. Approach 4 was corrected, together with Approach 1, formulating a new method named Approach 5S. Later, the proposed Approach 5S was evaluated under 205 indoor and 2233 outdoor panoramas from the Laval HDR databases, and it was shown to recover more reliable scalar illuminance with an average error within 5% in general. This study has provided a practical solution to more accurate vector illuminance-based metrics in real lighting environments. This algorithm can be further integrated into the development of cubic illumination meter instruments.","PeriodicalId":18133,"journal":{"name":"Lighting Research & Technology","volume":"55 1","pages":"62 - 78"},"PeriodicalIF":2.1000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining scalar illuminance from cubic illuminance data. Part 2: Tests in real lighting environments and an approach to improve its accuracy\",\"authors\":\"L. Xia, Y. Gu, X. Liu, T. Zhang, R. Xu\",\"doi\":\"10.1177/14771535221086667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scalar illuminance, which describes the constant illumination from all directions, is an important indicator of the abundance of light for a lit object and the adequacy of illumination perceived. This paper proposes a more reliable method to recover scalar illuminance based on tests in natural complex lighting environments. The performance of Cuttle’s Approach 1, Mangkuto’s Approach 2 and Approach 3, together with Xia et al.’s potential Approach 4, were tested under a total of 610 high dynamic range (HDR) panoramic maps of real scenes. The relationships between predicted scalar illuminance and normalised diffuseness levels were checked. The results indicate that the potential Approach 4 is more robust to the cubic meter’s postures, and the predicted scalar illuminance has a regular relationship with normalised diffuseness levels. Approach 4 was corrected, together with Approach 1, formulating a new method named Approach 5S. Later, the proposed Approach 5S was evaluated under 205 indoor and 2233 outdoor panoramas from the Laval HDR databases, and it was shown to recover more reliable scalar illuminance with an average error within 5% in general. This study has provided a practical solution to more accurate vector illuminance-based metrics in real lighting environments. This algorithm can be further integrated into the development of cubic illumination meter instruments.\",\"PeriodicalId\":18133,\"journal\":{\"name\":\"Lighting Research & Technology\",\"volume\":\"55 1\",\"pages\":\"62 - 78\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lighting Research & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14771535221086667\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lighting Research & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14771535221086667","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Determining scalar illuminance from cubic illuminance data. Part 2: Tests in real lighting environments and an approach to improve its accuracy
Scalar illuminance, which describes the constant illumination from all directions, is an important indicator of the abundance of light for a lit object and the adequacy of illumination perceived. This paper proposes a more reliable method to recover scalar illuminance based on tests in natural complex lighting environments. The performance of Cuttle’s Approach 1, Mangkuto’s Approach 2 and Approach 3, together with Xia et al.’s potential Approach 4, were tested under a total of 610 high dynamic range (HDR) panoramic maps of real scenes. The relationships between predicted scalar illuminance and normalised diffuseness levels were checked. The results indicate that the potential Approach 4 is more robust to the cubic meter’s postures, and the predicted scalar illuminance has a regular relationship with normalised diffuseness levels. Approach 4 was corrected, together with Approach 1, formulating a new method named Approach 5S. Later, the proposed Approach 5S was evaluated under 205 indoor and 2233 outdoor panoramas from the Laval HDR databases, and it was shown to recover more reliable scalar illuminance with an average error within 5% in general. This study has provided a practical solution to more accurate vector illuminance-based metrics in real lighting environments. This algorithm can be further integrated into the development of cubic illumination meter instruments.
期刊介绍:
Lighting Research & Technology (LR&T) publishes original peer-reviewed research on all aspects of light and lighting and is published in association with The Society of Light and Lighting. LR&T covers the human response to light, the science of light generation, light control and measurement plus lighting design for both interior and exterior environments, as well as daylighting, energy efficiency and sustainability