基于GAN的药物设计方法

Aninditha Ramesh, Anusha S. Rao, Sanjana Moudgalya, K. S. Srinivas
{"title":"基于GAN的药物设计方法","authors":"Aninditha Ramesh, Anusha S. Rao, Sanjana Moudgalya, K. S. Srinivas","doi":"10.1109/ICMLA52953.2021.00136","DOIUrl":null,"url":null,"abstract":"Deep Learning models have been a tremendous breakthrough in the field of Drug discovery, greatly simplifying the pre-clinical phase of this intricate task. With an intention to ease this further, we introduce a novel method to generate target-specific molecules using a Generative Adversarial Network (GAN). The dataset consists of drugs whose target proteins belong to the class of Tyrosine kinase and are specifically active against some of the growth factor receptors present in the human body. An Autoencoder network is used to learn the embeddings of the drug which is represented in the SMILES format and the deep neural network GAN is used to generate structurally valid molecules using drug-target interaction as the validating criteria. The model has successfully produced 39 novel structures and 15 of them show satisfactory binding with at least one of the target receptors.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"10 1","pages":"825-828"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"GAN Based Approach for Drug Design\",\"authors\":\"Aninditha Ramesh, Anusha S. Rao, Sanjana Moudgalya, K. S. Srinivas\",\"doi\":\"10.1109/ICMLA52953.2021.00136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Learning models have been a tremendous breakthrough in the field of Drug discovery, greatly simplifying the pre-clinical phase of this intricate task. With an intention to ease this further, we introduce a novel method to generate target-specific molecules using a Generative Adversarial Network (GAN). The dataset consists of drugs whose target proteins belong to the class of Tyrosine kinase and are specifically active against some of the growth factor receptors present in the human body. An Autoencoder network is used to learn the embeddings of the drug which is represented in the SMILES format and the deep neural network GAN is used to generate structurally valid molecules using drug-target interaction as the validating criteria. The model has successfully produced 39 novel structures and 15 of them show satisfactory binding with at least one of the target receptors.\",\"PeriodicalId\":6750,\"journal\":{\"name\":\"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"10 1\",\"pages\":\"825-828\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA52953.2021.00136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

深度学习模型在药物发现领域取得了巨大的突破,极大地简化了这一复杂任务的临床前阶段。为了进一步缓解这一问题,我们引入了一种使用生成对抗网络(GAN)生成目标特异性分子的新方法。该数据集由靶蛋白属于酪氨酸激酶类的药物组成,这些药物对人体中存在的一些生长因子受体具有特异性活性。使用自编码器网络学习以SMILES格式表示的药物嵌入,并使用深度神经网络GAN以药物-靶标相互作用为验证标准生成结构有效的分子。该模型成功地产生了39个新结构,其中15个与至少一种靶受体表现出满意的结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GAN Based Approach for Drug Design
Deep Learning models have been a tremendous breakthrough in the field of Drug discovery, greatly simplifying the pre-clinical phase of this intricate task. With an intention to ease this further, we introduce a novel method to generate target-specific molecules using a Generative Adversarial Network (GAN). The dataset consists of drugs whose target proteins belong to the class of Tyrosine kinase and are specifically active against some of the growth factor receptors present in the human body. An Autoencoder network is used to learn the embeddings of the drug which is represented in the SMILES format and the deep neural network GAN is used to generate structurally valid molecules using drug-target interaction as the validating criteria. The model has successfully produced 39 novel structures and 15 of them show satisfactory binding with at least one of the target receptors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Offensive Content on Twitter During Proud Boys Riots Explainable Zero-Shot Modelling of Clinical Depression Symptoms from Text Deep Learning Methods for the Prediction of Information Display Type Using Eye Tracking Sequences Step Detection using SVM on NURVV Trackers Condition Monitoring for Power Converters via Deep One-Class Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1