推荐带有隐马尔可夫模型的移动应用的API用法

Tam The Nguyen, H. Pham, P. Vu, T. Nguyen
{"title":"推荐带有隐马尔可夫模型的移动应用的API用法","authors":"Tam The Nguyen, H. Pham, P. Vu, T. Nguyen","doi":"10.1109/ASE.2015.109","DOIUrl":null,"url":null,"abstract":"Mobile apps often rely heavily on standard API frameworks and libraries. However, learning to use those APIs is often challenging due to the fast-changing nature of API frameworks and the insufficiency of documentation and code examples. This paper introduces DroidAssist, a recommendation tool for API usages of Android mobile apps. The core of DroidAssist is HAPI, a statistical, generative model of API usages based on Hidden Markov Model. With HAPIs trained from existing mobile apps, DroidAssist could perform code completion for method calls. It can also check existing call sequences to detect and repair suspicious (i.e. unpopular) API usages.","PeriodicalId":6586,"journal":{"name":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"17 1","pages":"795-800"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Recommending API Usages for Mobile Apps with Hidden Markov Model\",\"authors\":\"Tam The Nguyen, H. Pham, P. Vu, T. Nguyen\",\"doi\":\"10.1109/ASE.2015.109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile apps often rely heavily on standard API frameworks and libraries. However, learning to use those APIs is often challenging due to the fast-changing nature of API frameworks and the insufficiency of documentation and code examples. This paper introduces DroidAssist, a recommendation tool for API usages of Android mobile apps. The core of DroidAssist is HAPI, a statistical, generative model of API usages based on Hidden Markov Model. With HAPIs trained from existing mobile apps, DroidAssist could perform code completion for method calls. It can also check existing call sequences to detect and repair suspicious (i.e. unpopular) API usages.\",\"PeriodicalId\":6586,\"journal\":{\"name\":\"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"17 1\",\"pages\":\"795-800\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASE.2015.109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2015.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

移动应用通常严重依赖于标准的API框架和库。然而,由于API框架的快速变化以及文档和代码示例的不足,学习使用这些API通常是具有挑战性的。本文介绍了Android移动应用API使用推荐工具DroidAssist。DroidAssist的核心是HAPI,一个基于隐马尔可夫模型的API使用统计生成模型。通过从现有移动应用程序中训练的hapi, DroidAssist可以为方法调用执行代码补全。它还可以检查现有的调用序列,以检测和修复可疑的(即不受欢迎的)API使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recommending API Usages for Mobile Apps with Hidden Markov Model
Mobile apps often rely heavily on standard API frameworks and libraries. However, learning to use those APIs is often challenging due to the fast-changing nature of API frameworks and the insufficiency of documentation and code examples. This paper introduces DroidAssist, a recommendation tool for API usages of Android mobile apps. The core of DroidAssist is HAPI, a statistical, generative model of API usages based on Hidden Markov Model. With HAPIs trained from existing mobile apps, DroidAssist could perform code completion for method calls. It can also check existing call sequences to detect and repair suspicious (i.e. unpopular) API usages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cost-Efficient Sampling for Performance Prediction of Configurable Systems (T) Refactorings for Android Asynchronous Programming Study and Refactoring of Android Asynchronous Programming (T) The iMPAcT Tool: Testing UI Patterns on Mobile Applications Combining Deep Learning with Information Retrieval to Localize Buggy Files for Bug Reports (N)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1