Peng Liu, X. Zhang, Marco Pistoia, Yunhui Zheng, M. Marques, Lingfei Zeng
{"title":"自动文本输入生成移动测试","authors":"Peng Liu, X. Zhang, Marco Pistoia, Yunhui Zheng, M. Marques, Lingfei Zeng","doi":"10.1109/ICSE.2017.65","DOIUrl":null,"url":null,"abstract":"Many designs have been proposed to improve the automated mobile testing. Despite these improvements, providing appropriate text inputs remains a prominent obstacle, which hinders the large-scale adoption of automated testing approaches. The key challenge is how to automatically produce the most relevant text in a use case context. For example, a valid website address should be entered in the address bar of a mobile browser app to continue the testing of the app, a singer's name should be entered in the search bar of a music recommendation app. Without the proper text inputs, the testing would get stuck. We propose a novel deep learning based approach to address the challenge, which reduces the problem to a minimization problem. Another challenge is how to make the approach generally applicable to both the trained apps and the untrained apps. We leverage the Word2Vec model to address the challenge. We have built our approaches as a tool and evaluated it with 50 iOS mobile apps including Firefox and Wikipedia. The results show that our approach significantly outperforms existing automatic text input generation methods.","PeriodicalId":6505,"journal":{"name":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","volume":"15 1","pages":"643-653"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Automatic Text Input Generation for Mobile Testing\",\"authors\":\"Peng Liu, X. Zhang, Marco Pistoia, Yunhui Zheng, M. Marques, Lingfei Zeng\",\"doi\":\"10.1109/ICSE.2017.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many designs have been proposed to improve the automated mobile testing. Despite these improvements, providing appropriate text inputs remains a prominent obstacle, which hinders the large-scale adoption of automated testing approaches. The key challenge is how to automatically produce the most relevant text in a use case context. For example, a valid website address should be entered in the address bar of a mobile browser app to continue the testing of the app, a singer's name should be entered in the search bar of a music recommendation app. Without the proper text inputs, the testing would get stuck. We propose a novel deep learning based approach to address the challenge, which reduces the problem to a minimization problem. Another challenge is how to make the approach generally applicable to both the trained apps and the untrained apps. We leverage the Word2Vec model to address the challenge. We have built our approaches as a tool and evaluated it with 50 iOS mobile apps including Firefox and Wikipedia. The results show that our approach significantly outperforms existing automatic text input generation methods.\",\"PeriodicalId\":6505,\"journal\":{\"name\":\"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)\",\"volume\":\"15 1\",\"pages\":\"643-653\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE.2017.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2017.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Text Input Generation for Mobile Testing
Many designs have been proposed to improve the automated mobile testing. Despite these improvements, providing appropriate text inputs remains a prominent obstacle, which hinders the large-scale adoption of automated testing approaches. The key challenge is how to automatically produce the most relevant text in a use case context. For example, a valid website address should be entered in the address bar of a mobile browser app to continue the testing of the app, a singer's name should be entered in the search bar of a music recommendation app. Without the proper text inputs, the testing would get stuck. We propose a novel deep learning based approach to address the challenge, which reduces the problem to a minimization problem. Another challenge is how to make the approach generally applicable to both the trained apps and the untrained apps. We leverage the Word2Vec model to address the challenge. We have built our approaches as a tool and evaluated it with 50 iOS mobile apps including Firefox and Wikipedia. The results show that our approach significantly outperforms existing automatic text input generation methods.