基于深度传感器的人脸方向估计的基础研究

Ryota Nagayama, T. Endo, Takenobu Kazuma, A. He
{"title":"基于深度传感器的人脸方向估计的基础研究","authors":"Ryota Nagayama, T. Endo, Takenobu Kazuma, A. He","doi":"10.1109/ICAWST.2013.6765518","DOIUrl":null,"url":null,"abstract":"Kinect is a popular edition of depth sensor and is useful for realizing NUI in ubiquitous computing environment. This paper proposes a method for human face direction estimation based on the depth image from depth sensor. Our method works without using color information and is possible to work in dark environment and get better results than traditional methods. This paper describes the basic idea and basic design of our method.","PeriodicalId":68697,"journal":{"name":"炎黄地理","volume":"24 1","pages":"644-648"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A basic study of human face direction estimation using depth sensor\",\"authors\":\"Ryota Nagayama, T. Endo, Takenobu Kazuma, A. He\",\"doi\":\"10.1109/ICAWST.2013.6765518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kinect is a popular edition of depth sensor and is useful for realizing NUI in ubiquitous computing environment. This paper proposes a method for human face direction estimation based on the depth image from depth sensor. Our method works without using color information and is possible to work in dark environment and get better results than traditional methods. This paper describes the basic idea and basic design of our method.\",\"PeriodicalId\":68697,\"journal\":{\"name\":\"炎黄地理\",\"volume\":\"24 1\",\"pages\":\"644-648\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"炎黄地理\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2013.6765518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"炎黄地理","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/ICAWST.2013.6765518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

Kinect是一种流行的深度传感器版本,对于在普适计算环境下实现深度感知是非常有用的。提出了一种基于深度传感器深度图像的人脸方向估计方法。我们的方法可以在不使用颜色信息的情况下工作,并且可以在黑暗环境中工作,并且比传统方法获得更好的效果。本文介绍了该方法的基本思想和基本设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A basic study of human face direction estimation using depth sensor
Kinect is a popular edition of depth sensor and is useful for realizing NUI in ubiquitous computing environment. This paper proposes a method for human face direction estimation based on the depth image from depth sensor. Our method works without using color information and is possible to work in dark environment and get better results than traditional methods. This paper describes the basic idea and basic design of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
784
期刊最新文献
Make decision boundary smoother by transition learning Neurophysiological evidence of the cognitive cycle and the emergence of awareness An efficient implementation of normalized cross-correlation image matching based on pyramid A hybrid recommender system based non-common items in social media "Canderoid": A mobile system to remotely monitor travelling status of the elderly with dementia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1