一种k波段差分输出GaAs pHEMT压控振荡器

Hao Zhou
{"title":"一种k波段差分输出GaAs pHEMT压控振荡器","authors":"Hao Zhou","doi":"10.1109/ICICM54364.2021.9660350","DOIUrl":null,"url":null,"abstract":"In this paper, a K-band GaAs pHEMT voltage-controlled oscillator chip with differential-output is presented. The differential Colpitts Structure is adopted in this circuit design with two core oscillating loops integrated inside. Simulated results show this oscillator design can operates from 22.99GHz to 27.39GHz, with its relatively tuning frequency bandwidth of 17.47%. The single-ended output power of the chip is around 5dBm. A prototype chip is fabricated using PD25 process of Win foundry and is soldered on the test printed circuit board for performance measurement. The measurement results agree well with the simulated results. The prototype chip can operate from 23.24GHz to 28.17GHz, with its tuning voltage varied from -3V to 0V, achieving a relatively tuning bandwidth of 19.18%. The measured output power of the prototype is 4.5dBm with the differential-output single-ended. Phase noise performance is also provided, with the simulated and measured results agreed with each other well. Phase noise at 100KHz offset for the operating frequency band is around -80dBc/Hz.","PeriodicalId":6693,"journal":{"name":"2021 6th International Conference on Integrated Circuits and Microsystems (ICICM)","volume":"5 1","pages":"394-397"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A K-band Diffential-output GaAs pHEMT Voltage Controlled Oscillator\",\"authors\":\"Hao Zhou\",\"doi\":\"10.1109/ICICM54364.2021.9660350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a K-band GaAs pHEMT voltage-controlled oscillator chip with differential-output is presented. The differential Colpitts Structure is adopted in this circuit design with two core oscillating loops integrated inside. Simulated results show this oscillator design can operates from 22.99GHz to 27.39GHz, with its relatively tuning frequency bandwidth of 17.47%. The single-ended output power of the chip is around 5dBm. A prototype chip is fabricated using PD25 process of Win foundry and is soldered on the test printed circuit board for performance measurement. The measurement results agree well with the simulated results. The prototype chip can operate from 23.24GHz to 28.17GHz, with its tuning voltage varied from -3V to 0V, achieving a relatively tuning bandwidth of 19.18%. The measured output power of the prototype is 4.5dBm with the differential-output single-ended. Phase noise performance is also provided, with the simulated and measured results agreed with each other well. Phase noise at 100KHz offset for the operating frequency band is around -80dBc/Hz.\",\"PeriodicalId\":6693,\"journal\":{\"name\":\"2021 6th International Conference on Integrated Circuits and Microsystems (ICICM)\",\"volume\":\"5 1\",\"pages\":\"394-397\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 6th International Conference on Integrated Circuits and Microsystems (ICICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICM54364.2021.9660350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Integrated Circuits and Microsystems (ICICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICM54364.2021.9660350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文设计了一种差分输出的k波段砷化镓pHEMT压控振荡器芯片。本电路设计采用差分柯氏结构,内部集成了两个核心振荡回路。仿真结果表明,该振荡器工作频率范围为22.99GHz ~ 27.39GHz,相对调谐频率带宽为17.47%。芯片的单端输出功率在5dBm左右。采用winfoundry的PD25工艺制作原型芯片,并将其焊接在测试印刷电路板上进行性能测量。测量结果与仿真结果吻合较好。原型芯片工作频率为23.24GHz ~ 28.17GHz,调谐电压范围为-3V ~ 0V,相对调谐带宽为19.18%。样机的实测输出功率为4.5dBm,采用差分单端输出。给出了相位噪声性能,仿真结果与实测结果吻合较好。工作频带在100KHz偏移时的相位噪声约为-80dBc/Hz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A K-band Diffential-output GaAs pHEMT Voltage Controlled Oscillator
In this paper, a K-band GaAs pHEMT voltage-controlled oscillator chip with differential-output is presented. The differential Colpitts Structure is adopted in this circuit design with two core oscillating loops integrated inside. Simulated results show this oscillator design can operates from 22.99GHz to 27.39GHz, with its relatively tuning frequency bandwidth of 17.47%. The single-ended output power of the chip is around 5dBm. A prototype chip is fabricated using PD25 process of Win foundry and is soldered on the test printed circuit board for performance measurement. The measurement results agree well with the simulated results. The prototype chip can operate from 23.24GHz to 28.17GHz, with its tuning voltage varied from -3V to 0V, achieving a relatively tuning bandwidth of 19.18%. The measured output power of the prototype is 4.5dBm with the differential-output single-ended. Phase noise performance is also provided, with the simulated and measured results agreed with each other well. Phase noise at 100KHz offset for the operating frequency band is around -80dBc/Hz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[ICICM 2021 Front cover] Power Amplifier of Two-stage MMIC with Filter and Antenna Design for Transmitter Applications Design of a 220GHz Frequency Quadrupler in 0.13 µ m SiGe Technology RF Front-End CMOS Receiver with Antenna for Millimeter-Wave Applications A Reinforcement Learning-based Online-training AI Controller for DC-DC Switching Converters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1