Shuoyan Zhai, Xianying Cao, Juncheng Liu, Qiang Liu
{"title":"Al2O3/MgAl2O4定向凝固共晶陶瓷的组织特征及力学性能","authors":"Shuoyan Zhai, Xianying Cao, Juncheng Liu, Qiang Liu","doi":"10.1080/17436753.2022.2119545","DOIUrl":null,"url":null,"abstract":"ABSTRACT Al2O3/MgAl2O4 directionally solidified eutectic ceramic (DSEC) rods with Φ 10 mm were prepared with induction heating zone melting (IHZM) method. The phase components of the DSEC were composed of MgAl2O4 phase growing along the preferred orientation 〈311〉 and Al2O3 phases growing along the preferred orientation 〈110〉. In the DSEC, the Al2O3 phase is the matrix phase mixed with part of MgAl2O4 phase and the other part of MgAl2O4 phase forms slice structure. Both the DSEC density and hardness decrease with the increase of the growth rate, due to the increase of micropores in DSEC with the higher growth rate. However, its fracture toughness improved due to the fine interface spacing toughening and the dispersion toughening. The highest hardness and fracture toughness of DSEC are 19.3 GPa and 3.74 MPa·m1/2, respectively, the toughening effect could be attributed to the crack deflection and bifurcation hindering the propagation of crack in DSEC.","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":"12 1","pages":"119 - 123"},"PeriodicalIF":1.3000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microstructure characteristics and mechanical properties of Al2O3/MgAl2O4 directionally solidified eutectic ceramic\",\"authors\":\"Shuoyan Zhai, Xianying Cao, Juncheng Liu, Qiang Liu\",\"doi\":\"10.1080/17436753.2022.2119545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Al2O3/MgAl2O4 directionally solidified eutectic ceramic (DSEC) rods with Φ 10 mm were prepared with induction heating zone melting (IHZM) method. The phase components of the DSEC were composed of MgAl2O4 phase growing along the preferred orientation 〈311〉 and Al2O3 phases growing along the preferred orientation 〈110〉. In the DSEC, the Al2O3 phase is the matrix phase mixed with part of MgAl2O4 phase and the other part of MgAl2O4 phase forms slice structure. Both the DSEC density and hardness decrease with the increase of the growth rate, due to the increase of micropores in DSEC with the higher growth rate. However, its fracture toughness improved due to the fine interface spacing toughening and the dispersion toughening. The highest hardness and fracture toughness of DSEC are 19.3 GPa and 3.74 MPa·m1/2, respectively, the toughening effect could be attributed to the crack deflection and bifurcation hindering the propagation of crack in DSEC.\",\"PeriodicalId\":7224,\"journal\":{\"name\":\"Advances in Applied Ceramics\",\"volume\":\"12 1\",\"pages\":\"119 - 123\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/17436753.2022.2119545\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/17436753.2022.2119545","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Microstructure characteristics and mechanical properties of Al2O3/MgAl2O4 directionally solidified eutectic ceramic
ABSTRACT Al2O3/MgAl2O4 directionally solidified eutectic ceramic (DSEC) rods with Φ 10 mm were prepared with induction heating zone melting (IHZM) method. The phase components of the DSEC were composed of MgAl2O4 phase growing along the preferred orientation 〈311〉 and Al2O3 phases growing along the preferred orientation 〈110〉. In the DSEC, the Al2O3 phase is the matrix phase mixed with part of MgAl2O4 phase and the other part of MgAl2O4 phase forms slice structure. Both the DSEC density and hardness decrease with the increase of the growth rate, due to the increase of micropores in DSEC with the higher growth rate. However, its fracture toughness improved due to the fine interface spacing toughening and the dispersion toughening. The highest hardness and fracture toughness of DSEC are 19.3 GPa and 3.74 MPa·m1/2, respectively, the toughening effect could be attributed to the crack deflection and bifurcation hindering the propagation of crack in DSEC.
期刊介绍:
Advances in Applied Ceramics: Structural, Functional and Bioceramics provides international coverage of high-quality research on functional ceramics, engineering ceramics and bioceramics.