R. Goto, Taiju Saito, Y. Kawakami, Tomoe Kitauchi, Misae Takagi, T. Todo, K. Arai, E. Yamaha
{"title":"棘牙鲆远洋受精卵中原始生殖细胞的可视化。","authors":"R. Goto, Taiju Saito, Y. Kawakami, Tomoe Kitauchi, Misae Takagi, T. Todo, K. Arai, E. Yamaha","doi":"10.1387/ijdb.150008rg","DOIUrl":null,"url":null,"abstract":"Primordial germ cells (PGCs) appear during early embryogenesis and differentiate into gametes through oogenesis or spermatogenesis. Teleost PGCs can be visualized by injecting RNA transcribed from the fusion product of a fluorescent protein gene attached to the 3' untranslated region (3'UTR) of zebrafish nanos3 (zf-nos3). Although this method has been widely applied to teleost PGCs, the visualization of PGCs in pelagic species that have eggs with a hard chorion is more problematic due to the technical difficulty of microinjection into their eggs. In this study, we developed a reliable method for microinjection of fertilized eggs in a pelagic species, the barfin flounder. Using a microneedle with a constriction \"brake\", we were able to introduce gfp-nos3 3'UTR mRNA into embryos and to determine the origin and migration route of PGCs. We also isolated the barfin flounder nos3 (bf-nos3) gene to compare its 3'UTR sequence with that of zebrafish. The 3'UTR of the bf-nos3 sequence was longer than that of zf-nos3. However, PGCs were also visualized after injection of gfp-bf-nos3 3'UTR mRNA both in zebrafish and barfin flounder. These results suggest that the function of nos3 is conserved between these species regardless of the sequence differences. The method developed here for labeling PGCs with gfp-nos3 mRNA will provide a means to study PGC development in the embryos of a wide range of marine fish species.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Visualization of primordial germ cells in the fertilized pelagic eggs of the barfin flounder Verasper moseri.\",\"authors\":\"R. Goto, Taiju Saito, Y. Kawakami, Tomoe Kitauchi, Misae Takagi, T. Todo, K. Arai, E. Yamaha\",\"doi\":\"10.1387/ijdb.150008rg\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Primordial germ cells (PGCs) appear during early embryogenesis and differentiate into gametes through oogenesis or spermatogenesis. Teleost PGCs can be visualized by injecting RNA transcribed from the fusion product of a fluorescent protein gene attached to the 3' untranslated region (3'UTR) of zebrafish nanos3 (zf-nos3). Although this method has been widely applied to teleost PGCs, the visualization of PGCs in pelagic species that have eggs with a hard chorion is more problematic due to the technical difficulty of microinjection into their eggs. In this study, we developed a reliable method for microinjection of fertilized eggs in a pelagic species, the barfin flounder. Using a microneedle with a constriction \\\"brake\\\", we were able to introduce gfp-nos3 3'UTR mRNA into embryos and to determine the origin and migration route of PGCs. We also isolated the barfin flounder nos3 (bf-nos3) gene to compare its 3'UTR sequence with that of zebrafish. The 3'UTR of the bf-nos3 sequence was longer than that of zf-nos3. However, PGCs were also visualized after injection of gfp-bf-nos3 3'UTR mRNA both in zebrafish and barfin flounder. These results suggest that the function of nos3 is conserved between these species regardless of the sequence differences. The method developed here for labeling PGCs with gfp-nos3 mRNA will provide a means to study PGC development in the embryos of a wide range of marine fish species.\",\"PeriodicalId\":94228,\"journal\":{\"name\":\"The International journal of developmental biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International journal of developmental biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1387/ijdb.150008rg\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International journal of developmental biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1387/ijdb.150008rg","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visualization of primordial germ cells in the fertilized pelagic eggs of the barfin flounder Verasper moseri.
Primordial germ cells (PGCs) appear during early embryogenesis and differentiate into gametes through oogenesis or spermatogenesis. Teleost PGCs can be visualized by injecting RNA transcribed from the fusion product of a fluorescent protein gene attached to the 3' untranslated region (3'UTR) of zebrafish nanos3 (zf-nos3). Although this method has been widely applied to teleost PGCs, the visualization of PGCs in pelagic species that have eggs with a hard chorion is more problematic due to the technical difficulty of microinjection into their eggs. In this study, we developed a reliable method for microinjection of fertilized eggs in a pelagic species, the barfin flounder. Using a microneedle with a constriction "brake", we were able to introduce gfp-nos3 3'UTR mRNA into embryos and to determine the origin and migration route of PGCs. We also isolated the barfin flounder nos3 (bf-nos3) gene to compare its 3'UTR sequence with that of zebrafish. The 3'UTR of the bf-nos3 sequence was longer than that of zf-nos3. However, PGCs were also visualized after injection of gfp-bf-nos3 3'UTR mRNA both in zebrafish and barfin flounder. These results suggest that the function of nos3 is conserved between these species regardless of the sequence differences. The method developed here for labeling PGCs with gfp-nos3 mRNA will provide a means to study PGC development in the embryos of a wide range of marine fish species.