基于模糊逻辑全局特征估计的针叶树状态分类识别

A. Pyataev, A. Redkin, A. Pyataeva
{"title":"基于模糊逻辑全局特征估计的针叶树状态分类识别","authors":"A. Pyataev, A. Redkin, A. Pyataeva","doi":"10.18287/1613-0073-2019-2391-211-215","DOIUrl":null,"url":null,"abstract":"Tree state category identification allows forecasting forest development in the surveyed area. Tree state category determination process based on global features is subjective and uses concepts such as the degree of density of the crown, the degree of drying of branches, the fall of the bark, the color of the needles, etc. For global features estimation, fuzzy logic is used. To formalize these subjective concepts, linguistic variables and their terms were extracted. The characteristic functions describing the terms were piecewise linear and in this work were approximated by Gaussian functions. Such an approach in conjunction with image processing algorithms that allows to search objects on images or correct images obtained for example from unmanned aerial vehicles could be the basis of a system for automatically determining the forest plantations health state and improve the inspection quality. The study was conducted for coniferous species of the boreal zone. The mathematical model built in this work allows reducing the cost of automation of calculations related to the processing of the data obtained by forest pathological surveys, despite the fact that the accuracy value of fuzzy classification after the approximation of the membership functions remained at the same level.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tree state category identification for boreal area conifers using global features estimation by fuzzy logic approach\",\"authors\":\"A. Pyataev, A. Redkin, A. Pyataeva\",\"doi\":\"10.18287/1613-0073-2019-2391-211-215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tree state category identification allows forecasting forest development in the surveyed area. Tree state category determination process based on global features is subjective and uses concepts such as the degree of density of the crown, the degree of drying of branches, the fall of the bark, the color of the needles, etc. For global features estimation, fuzzy logic is used. To formalize these subjective concepts, linguistic variables and their terms were extracted. The characteristic functions describing the terms were piecewise linear and in this work were approximated by Gaussian functions. Such an approach in conjunction with image processing algorithms that allows to search objects on images or correct images obtained for example from unmanned aerial vehicles could be the basis of a system for automatically determining the forest plantations health state and improve the inspection quality. The study was conducted for coniferous species of the boreal zone. The mathematical model built in this work allows reducing the cost of automation of calculations related to the processing of the data obtained by forest pathological surveys, despite the fact that the accuracy value of fuzzy classification after the approximation of the membership functions remained at the same level.\",\"PeriodicalId\":10486,\"journal\":{\"name\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/1613-0073-2019-2391-211-215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2391-211-215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

树木状态类别的识别可以预测调查地区的森林发展。基于全局特征的树木状态类别确定过程是主观的,使用诸如树冠密度程度、树枝干燥程度、树皮掉落程度、针叶颜色等概念。对于全局特征估计,采用模糊逻辑。为了形式化这些主观概念,提取了语言变量及其术语。描述这些项的特征函数是分段线性的,在这项工作中是用高斯函数近似的。这种方法与图像处理算法相结合,允许在图像上搜索物体或纠正例如从无人机获得的图像,可以成为自动确定森林种植园健康状态和提高检查质量的系统的基础。研究对象为北方针叶林树种。在本工作中建立的数学模型可以降低与森林病理调查获得的数据处理相关的自动化计算成本,尽管在逼近隶属函数后模糊分类的精度值保持在同一水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tree state category identification for boreal area conifers using global features estimation by fuzzy logic approach
Tree state category identification allows forecasting forest development in the surveyed area. Tree state category determination process based on global features is subjective and uses concepts such as the degree of density of the crown, the degree of drying of branches, the fall of the bark, the color of the needles, etc. For global features estimation, fuzzy logic is used. To formalize these subjective concepts, linguistic variables and their terms were extracted. The characteristic functions describing the terms were piecewise linear and in this work were approximated by Gaussian functions. Such an approach in conjunction with image processing algorithms that allows to search objects on images or correct images obtained for example from unmanned aerial vehicles could be the basis of a system for automatically determining the forest plantations health state and improve the inspection quality. The study was conducted for coniferous species of the boreal zone. The mathematical model built in this work allows reducing the cost of automation of calculations related to the processing of the data obtained by forest pathological surveys, despite the fact that the accuracy value of fuzzy classification after the approximation of the membership functions remained at the same level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of optimal configurations of a convolutional neural network for the identification of objects in real-time Recognition of forest and shrub communities on the base of remotely sensed data supported by ground studies Selection of aggregated classifiers for the prediction of the state of technical objects Method for reconstructing the real coordinates of an object from its plane image Using Models of Parallel Specialized Processors to Solve the Problem of Signal Separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1