低秩密度矩阵的最优估计

V. Koltchinskii, Dong Xia
{"title":"低秩密度矩阵的最优估计","authors":"V. Koltchinskii, Dong Xia","doi":"10.5555/2789272.2886806","DOIUrl":null,"url":null,"abstract":"The density matrices are positively semi-definite Hermitian matrices of unit trace that describe the state of a quantum system. The goal of the paper is to develop minimax lower bounds on error rates of estimation of low rank density matrices in trace regression models used in quantum state tomography (in particular, in the case of Pauli measurements) with explicit dependence of the bounds on the rank and other complexity parameters. Such bounds are established for several statistically relevant distances, including quantum versions of Kullback-Leibler divergence (relative entropy distance) and of Hellinger distance (so called Bures distance), and Schatten $p$-norm distances. Sharp upper bounds and oracle inequalities for least squares estimator with von Neumann entropy penalization are obtained showing that minimax lower bounds are attained (up to logarithmic factors) for these distances.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"32 1","pages":"1757-1792"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Optimal estimation of low rank density matrices\",\"authors\":\"V. Koltchinskii, Dong Xia\",\"doi\":\"10.5555/2789272.2886806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The density matrices are positively semi-definite Hermitian matrices of unit trace that describe the state of a quantum system. The goal of the paper is to develop minimax lower bounds on error rates of estimation of low rank density matrices in trace regression models used in quantum state tomography (in particular, in the case of Pauli measurements) with explicit dependence of the bounds on the rank and other complexity parameters. Such bounds are established for several statistically relevant distances, including quantum versions of Kullback-Leibler divergence (relative entropy distance) and of Hellinger distance (so called Bures distance), and Schatten $p$-norm distances. Sharp upper bounds and oracle inequalities for least squares estimator with von Neumann entropy penalization are obtained showing that minimax lower bounds are attained (up to logarithmic factors) for these distances.\",\"PeriodicalId\":14794,\"journal\":{\"name\":\"J. Mach. Learn. Res.\",\"volume\":\"32 1\",\"pages\":\"1757-1792\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Mach. Learn. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/2789272.2886806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2789272.2886806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

密度矩阵是描述量子系统状态的单位迹线的正半确定厄米矩阵。本文的目标是开发用于量子态层析(特别是泡利测量的情况下)的迹回归模型中低秩密度矩阵估计错误率的最小最大下界,其边界显式依赖于秩和其他复杂性参数。这样的界限是为几个统计上相关的距离建立的,包括量子版本的Kullback-Leibler散度(相对熵距离)和Hellinger距离(所谓的Bures距离),以及Schatten $p$范数距离。得到了具有冯·诺依曼熵惩罚的最小二乘估计的尖锐上界和oracle不等式,表明对于这些距离获得了极大极小下界(直到对数因子)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal estimation of low rank density matrices
The density matrices are positively semi-definite Hermitian matrices of unit trace that describe the state of a quantum system. The goal of the paper is to develop minimax lower bounds on error rates of estimation of low rank density matrices in trace regression models used in quantum state tomography (in particular, in the case of Pauli measurements) with explicit dependence of the bounds on the rank and other complexity parameters. Such bounds are established for several statistically relevant distances, including quantum versions of Kullback-Leibler divergence (relative entropy distance) and of Hellinger distance (so called Bures distance), and Schatten $p$-norm distances. Sharp upper bounds and oracle inequalities for least squares estimator with von Neumann entropy penalization are obtained showing that minimax lower bounds are attained (up to logarithmic factors) for these distances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Computation of Causal Bounds A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning Adaptive False Discovery Rate Control with Privacy Guarantee Fairlearn: Assessing and Improving Fairness of AI Systems Generalization Bounds for Adversarial Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1