{"title":"浓度调制下弱非线性双扩散磁对流的研究","authors":"Atul Jakhar, Anand Kumar, Vinod K. Gupta","doi":"10.1002/htj.22939","DOIUrl":null,"url":null,"abstract":"This article explains the heat and mass transfer of electrically conducting Newtonian fluid in double‐diffusive magnetoconvective flow. We have considered two infinite horizontal plates at a constant distance apart under the concentration‐modulated boundary condition. A constant magnetic field is considered in vertically upward directions, which generates an induced magnetic field. We have used the weakly nonlinear analysis to obtain the heat and mass transfer rate using the Ginzburg–Landau equation. The software MATHEMATICA is used to determine the solution of the Ginzburg–Landau equation by inbuilt function. The effects of physical parameters that occurred in the study on the Nusselt number and Sherwood number have been examined graphically. Modulation has a negligible effect on the threshold value of the thermal Rayleigh number, that is, on stationary convection. Moreover, it was found that the Chandrasekhar number, magnetic‐Prandtl number, amplitude of modulation, and frequency of modulation are proportional to the heat and mass transports.","PeriodicalId":50408,"journal":{"name":"Heat Transfer Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study of weakly nonlinear double‐diffusive magnetoconvection under concentration modulation\",\"authors\":\"Atul Jakhar, Anand Kumar, Vinod K. Gupta\",\"doi\":\"10.1002/htj.22939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article explains the heat and mass transfer of electrically conducting Newtonian fluid in double‐diffusive magnetoconvective flow. We have considered two infinite horizontal plates at a constant distance apart under the concentration‐modulated boundary condition. A constant magnetic field is considered in vertically upward directions, which generates an induced magnetic field. We have used the weakly nonlinear analysis to obtain the heat and mass transfer rate using the Ginzburg–Landau equation. The software MATHEMATICA is used to determine the solution of the Ginzburg–Landau equation by inbuilt function. The effects of physical parameters that occurred in the study on the Nusselt number and Sherwood number have been examined graphically. Modulation has a negligible effect on the threshold value of the thermal Rayleigh number, that is, on stationary convection. Moreover, it was found that the Chandrasekhar number, magnetic‐Prandtl number, amplitude of modulation, and frequency of modulation are proportional to the heat and mass transports.\",\"PeriodicalId\":50408,\"journal\":{\"name\":\"Heat Transfer Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/htj.22939\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/htj.22939","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Study of weakly nonlinear double‐diffusive magnetoconvection under concentration modulation
This article explains the heat and mass transfer of electrically conducting Newtonian fluid in double‐diffusive magnetoconvective flow. We have considered two infinite horizontal plates at a constant distance apart under the concentration‐modulated boundary condition. A constant magnetic field is considered in vertically upward directions, which generates an induced magnetic field. We have used the weakly nonlinear analysis to obtain the heat and mass transfer rate using the Ginzburg–Landau equation. The software MATHEMATICA is used to determine the solution of the Ginzburg–Landau equation by inbuilt function. The effects of physical parameters that occurred in the study on the Nusselt number and Sherwood number have been examined graphically. Modulation has a negligible effect on the threshold value of the thermal Rayleigh number, that is, on stationary convection. Moreover, it was found that the Chandrasekhar number, magnetic‐Prandtl number, amplitude of modulation, and frequency of modulation are proportional to the heat and mass transports.
期刊介绍:
Heat Transfer Research (ISSN1064-2285) presents archived theoretical, applied, and experimental papers selected globally. Selected papers from technical conference proceedings and academic laboratory reports are also published. Papers are selected and reviewed by a group of expert associate editors, guided by a distinguished advisory board, and represent the best of current work in the field. Heat Transfer Research is published under an exclusive license to Begell House, Inc., in full compliance with the International Copyright Convention. Subjects covered in Heat Transfer Research encompass the entire field of heat transfer and relevant areas of fluid dynamics, including conduction, convection and radiation, phase change phenomena including boiling and solidification, heat exchanger design and testing, heat transfer in nuclear reactors, mass transfer, geothermal heat recovery, multi-scale heat transfer, heat and mass transfer in alternative energy systems, and thermophysical properties of materials.