Anastasiia Iefanova, U. Gautam, P. Poudel, Daren Davoux, J. Nepal, Venkataiah Mallam, Q. Qiao, B. Logue, M. Baroughi
{"title":"染料敏化太阳能电池用低成本铂对电极","authors":"Anastasiia Iefanova, U. Gautam, P. Poudel, Daren Davoux, J. Nepal, Venkataiah Mallam, Q. Qiao, B. Logue, M. Baroughi","doi":"10.1109/PVSC.2013.6745034","DOIUrl":null,"url":null,"abstract":"A platinum counter-electrode (CE) was fabricated using spray-deposition method to provide efficient dye-sensitized solar cells (DSSCs). This method uses over 86% less Pt compared to conventional Pt counter-electrode prepared by highly efficient sputter deposition method. The cost of this new counter-electrode is estimated to be only 0.11$/Wp. Moreover, this counter-electrode exhibits a high transparency, over 80% in visible and near infrared, along with high catalytic activity, comparable with that of the conventional Pt counter-electrode. Scanning electron microscope (SEM) images show Pt nanoparticles varying in size from 5 nm to 70 nm distributed on transparent conducting oxide (TCO)/glass substrate. DSSCs based on this counter-electrode showed 6.17% power conversion efficiency, comparable to 6.46% efficiency of the corresponding reference DSSC with sputtered Pt counter-electrode.","PeriodicalId":6350,"journal":{"name":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","volume":"67 1","pages":"2716-2719"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Low cost platinum counter electrode for dye-sensitized solar cells\",\"authors\":\"Anastasiia Iefanova, U. Gautam, P. Poudel, Daren Davoux, J. Nepal, Venkataiah Mallam, Q. Qiao, B. Logue, M. Baroughi\",\"doi\":\"10.1109/PVSC.2013.6745034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A platinum counter-electrode (CE) was fabricated using spray-deposition method to provide efficient dye-sensitized solar cells (DSSCs). This method uses over 86% less Pt compared to conventional Pt counter-electrode prepared by highly efficient sputter deposition method. The cost of this new counter-electrode is estimated to be only 0.11$/Wp. Moreover, this counter-electrode exhibits a high transparency, over 80% in visible and near infrared, along with high catalytic activity, comparable with that of the conventional Pt counter-electrode. Scanning electron microscope (SEM) images show Pt nanoparticles varying in size from 5 nm to 70 nm distributed on transparent conducting oxide (TCO)/glass substrate. DSSCs based on this counter-electrode showed 6.17% power conversion efficiency, comparable to 6.46% efficiency of the corresponding reference DSSC with sputtered Pt counter-electrode.\",\"PeriodicalId\":6350,\"journal\":{\"name\":\"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"67 1\",\"pages\":\"2716-2719\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2013.6745034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2013.6745034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low cost platinum counter electrode for dye-sensitized solar cells
A platinum counter-electrode (CE) was fabricated using spray-deposition method to provide efficient dye-sensitized solar cells (DSSCs). This method uses over 86% less Pt compared to conventional Pt counter-electrode prepared by highly efficient sputter deposition method. The cost of this new counter-electrode is estimated to be only 0.11$/Wp. Moreover, this counter-electrode exhibits a high transparency, over 80% in visible and near infrared, along with high catalytic activity, comparable with that of the conventional Pt counter-electrode. Scanning electron microscope (SEM) images show Pt nanoparticles varying in size from 5 nm to 70 nm distributed on transparent conducting oxide (TCO)/glass substrate. DSSCs based on this counter-electrode showed 6.17% power conversion efficiency, comparable to 6.46% efficiency of the corresponding reference DSSC with sputtered Pt counter-electrode.