基于高斯混合模型和自回归模型的无监督选择性估计

Zizhong Meng, Peizhi Wu, Gao Cong, Rong Zhu, Shuai Ma
{"title":"基于高斯混合模型和自回归模型的无监督选择性估计","authors":"Zizhong Meng, Peizhi Wu, Gao Cong, Rong Zhu, Shuai Ma","doi":"10.48786/edbt.2022.13","DOIUrl":null,"url":null,"abstract":"Selectivity estimation is a fundamental database task, which has been studied for decades. A recent trend is to use deep learning methods for selectivity estimation. Deep autoregressive models have been reported to achieve excellent accuracy. However, if the relation has continuous attributes with large domain sizes, the search space of query inference on deep autoregressive models can be very large, resulting in inaccurate estimation and inefficient inference. To address this challenge, we propose a new model that integrates multiple Gaussian mixture models and a deep autoregressive model. On the one hand, Gaussian mixture models can fit the distribution of continuous attributes and reduce their domain sizes. On the other hand, deep autoregressive model can learn the joint data distribution with reduced domain attributes. In experiments, we compare with multiple baselines on 4 real-world datasets containing continuous attributes, and the experimental results demonstrate that our model can achieve up to 20 times higher accuracy than the second best estimators, while using less space and inference time.","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"10 1","pages":"2:247-2:259"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unsupervised Selectivity Estimation by Integrating Gaussian Mixture Models and an Autoregressive Model\",\"authors\":\"Zizhong Meng, Peizhi Wu, Gao Cong, Rong Zhu, Shuai Ma\",\"doi\":\"10.48786/edbt.2022.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selectivity estimation is a fundamental database task, which has been studied for decades. A recent trend is to use deep learning methods for selectivity estimation. Deep autoregressive models have been reported to achieve excellent accuracy. However, if the relation has continuous attributes with large domain sizes, the search space of query inference on deep autoregressive models can be very large, resulting in inaccurate estimation and inefficient inference. To address this challenge, we propose a new model that integrates multiple Gaussian mixture models and a deep autoregressive model. On the one hand, Gaussian mixture models can fit the distribution of continuous attributes and reduce their domain sizes. On the other hand, deep autoregressive model can learn the joint data distribution with reduced domain attributes. In experiments, we compare with multiple baselines on 4 real-world datasets containing continuous attributes, and the experimental results demonstrate that our model can achieve up to 20 times higher accuracy than the second best estimators, while using less space and inference time.\",\"PeriodicalId\":88813,\"journal\":{\"name\":\"Advances in database technology : proceedings. International Conference on Extending Database Technology\",\"volume\":\"10 1\",\"pages\":\"2:247-2:259\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in database technology : proceedings. International Conference on Extending Database Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48786/edbt.2022.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2022.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

选择性估计是一项基本的数据库任务,已经被研究了几十年。最近的一个趋势是使用深度学习方法进行选择性估计。据报道,深度自回归模型达到了很高的精度。然而,如果关系具有连续属性且域大小较大,则深度自回归模型查询推理的搜索空间可能非常大,导致估计不准确,推理效率低下。为了解决这一挑战,我们提出了一个新的模型,该模型集成了多个高斯混合模型和一个深度自回归模型。一方面,高斯混合模型可以拟合连续属性的分布,减小属性的域大小;另一方面,深度自回归模型可以学习具有约简域属性的联合数据分布。在实验中,我们在4个包含连续属性的真实数据集上与多个基线进行了比较,实验结果表明,我们的模型在使用更少的空间和推理时间的情况下,可以实现比第二好的估计器高20倍的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised Selectivity Estimation by Integrating Gaussian Mixture Models and an Autoregressive Model
Selectivity estimation is a fundamental database task, which has been studied for decades. A recent trend is to use deep learning methods for selectivity estimation. Deep autoregressive models have been reported to achieve excellent accuracy. However, if the relation has continuous attributes with large domain sizes, the search space of query inference on deep autoregressive models can be very large, resulting in inaccurate estimation and inefficient inference. To address this challenge, we propose a new model that integrates multiple Gaussian mixture models and a deep autoregressive model. On the one hand, Gaussian mixture models can fit the distribution of continuous attributes and reduce their domain sizes. On the other hand, deep autoregressive model can learn the joint data distribution with reduced domain attributes. In experiments, we compare with multiple baselines on 4 real-world datasets containing continuous attributes, and the experimental results demonstrate that our model can achieve up to 20 times higher accuracy than the second best estimators, while using less space and inference time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computing Generic Abstractions from Application Datasets Fair Spatial Indexing: A paradigm for Group Spatial Fairness. Data Coverage for Detecting Representation Bias in Image Datasets: A Crowdsourcing Approach Auditing for Spatial Fairness TransEdge: Supporting Efficient Read Queries Across Untrusted Edge Nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1