物质在固体、液体和气体状态下的晶体流动、液体流动和汽化混沌粒子的比例不变量

V. P. Malyshev, A. Makasheva, L. Bekbayeva
{"title":"物质在固体、液体和气体状态下的晶体流动、液体流动和汽化混沌粒子的比例不变量","authors":"V. P. Malyshev, A. Makasheva, L. Bekbayeva","doi":"10.31489/2021ch4/69-78","DOIUrl":null,"url":null,"abstract":"The authors of the article have developed the concept of chaotic particles based on the Boltzmann distribution over the kinetic energy of the particles’ chaotic motion. This distribution allows to combine the solid, liquid, and gaseous states of matter with the help of energetic particles called crystal-mobile, liquid-mobile, and vapor-mobile. The ratio of the proportions of such randomized particles determines a certain state of matter aggregation. The sum of the shares of these particles in all combinations at any temperature is equal to unity. During the study it has identified that qualitative and quantitative analysis of states with a priority basic effect of a randomized component of a substance can be conducted. Certain regularities of states were discovered, independent of the specific type of substance and consistent with the physicochemical properties. The entropy of mixing of all three energy classes of chaotic particles was calculated for simple substances. It was characterized by a maximum in the interval of the boiling point of substances. This feature testifies to the unique variety of possibilities for the implementation of the most complex heterogeneous processes in terrestrial conditions at atmospheric pressure, which ultimately ensured the self-organization of life","PeriodicalId":9421,"journal":{"name":"Bulletin of the Karaganda University. \"Chemistry\" series","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariants of ratio of crystal-mobile, liquid-mobile, and vaporized chaotized particles in solid, liquid, and gas states of substance\",\"authors\":\"V. P. Malyshev, A. Makasheva, L. Bekbayeva\",\"doi\":\"10.31489/2021ch4/69-78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors of the article have developed the concept of chaotic particles based on the Boltzmann distribution over the kinetic energy of the particles’ chaotic motion. This distribution allows to combine the solid, liquid, and gaseous states of matter with the help of energetic particles called crystal-mobile, liquid-mobile, and vapor-mobile. The ratio of the proportions of such randomized particles determines a certain state of matter aggregation. The sum of the shares of these particles in all combinations at any temperature is equal to unity. During the study it has identified that qualitative and quantitative analysis of states with a priority basic effect of a randomized component of a substance can be conducted. Certain regularities of states were discovered, independent of the specific type of substance and consistent with the physicochemical properties. The entropy of mixing of all three energy classes of chaotic particles was calculated for simple substances. It was characterized by a maximum in the interval of the boiling point of substances. This feature testifies to the unique variety of possibilities for the implementation of the most complex heterogeneous processes in terrestrial conditions at atmospheric pressure, which ultimately ensured the self-organization of life\",\"PeriodicalId\":9421,\"journal\":{\"name\":\"Bulletin of the Karaganda University. \\\"Chemistry\\\" series\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University. \\\"Chemistry\\\" series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2021ch4/69-78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University. \"Chemistry\" series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2021ch4/69-78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文作者基于粒子混沌运动动能的玻尔兹曼分布,提出了混沌粒子的概念。这种分布使得物质的固体、液体和气体状态在被称为晶体流动、液体流动和蒸汽流动的高能粒子的帮助下结合起来。这些随机粒子的比例决定了物质聚集的某种状态。在任何温度下,这些粒子在所有组合中的份额之和等于1。在研究过程中,确定了可以对物质的随机成分具有优先基本效应的状态进行定性和定量分析。发现了某些状态的规律,这些规律与物质的特定类型无关,与物理化学性质一致。计算了简单物质中混沌粒子三种能量混合的熵。它的特点是在物质的沸点区间有一个最大值。这一特征证明了在大气压力下,在陆地条件下实施最复杂的异质过程的独特可能性,这最终确保了生命的自组织
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Invariants of ratio of crystal-mobile, liquid-mobile, and vaporized chaotized particles in solid, liquid, and gas states of substance
The authors of the article have developed the concept of chaotic particles based on the Boltzmann distribution over the kinetic energy of the particles’ chaotic motion. This distribution allows to combine the solid, liquid, and gaseous states of matter with the help of energetic particles called crystal-mobile, liquid-mobile, and vapor-mobile. The ratio of the proportions of such randomized particles determines a certain state of matter aggregation. The sum of the shares of these particles in all combinations at any temperature is equal to unity. During the study it has identified that qualitative and quantitative analysis of states with a priority basic effect of a randomized component of a substance can be conducted. Certain regularities of states were discovered, independent of the specific type of substance and consistent with the physicochemical properties. The entropy of mixing of all three energy classes of chaotic particles was calculated for simple substances. It was characterized by a maximum in the interval of the boiling point of substances. This feature testifies to the unique variety of possibilities for the implementation of the most complex heterogeneous processes in terrestrial conditions at atmospheric pressure, which ultimately ensured the self-organization of life
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanical and Thermal Degradation Properties of Isotactic Polypropylene Composites with Cloisite15A and Cloisite20A Assessing polyacrylamide solution chemical stability during a polymer flood in the Kalamkas field, Western Kazakhstan Synthesis and study of a new mixed-layered compound GeBi3Te4 belonging to the nBi2–mGeBi2Te4 homologous series QSAR tool for optimization of nitrobenzamide pharmacophore for antitubercular activity Thermodynamics of chalcocite dissolving in solutions of flotation reagents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1