蕨类植物叶肉解剖结构的变化对叶片气体交换、光捕获和叶片水力传导有显著影响。

IF 2.1 4区 生物学 Q2 PLANT SCIENCES Photosynthetica Pub Date : 2023-05-04 eCollection Date: 2023-01-01 DOI:10.32615/ps.2023.017
S Fujii, K Nishida, T K Akitsu, A Kume, Y T Hanba
{"title":"蕨类植物叶肉解剖结构的变化对叶片气体交换、光捕获和叶片水力传导有显著影响。","authors":"S Fujii, K Nishida, T K Akitsu, A Kume, Y T Hanba","doi":"10.32615/ps.2023.017","DOIUrl":null,"url":null,"abstract":"<p><p>The mesophyll anatomical traits are essential factors for efficient light capture, CO<sub>2</sub> diffusion, and hydraulics in leaves. At the same time, leaf hydraulics are governed by the xylem anatomical traits. Thus, simultaneous analyses of the mesophyll and xylem anatomy will clarify the links among light capture, CO<sub>2</sub> capture, and water use. However, such simultaneous analyses have been scarcely performed, particularly on non-seed plants. Using seven fern species, we first showed that fern species with a large mesophyll thickness had a high photosynthetic rate related to high light capture, high drought tolerance, and low leaf hydraulic conductance. The chloroplast surface area (S<sub>c</sub>) per mesophyll thickness significantly decreased with an increase in mesophyll thickness, which may increase light diffusion and absorption efficiency in each chloroplast. The photosynthetic rate per S<sub>c</sub> was almost constant with mesophyll thickness, which suggests that ferns enhance their light capture ability <i>via</i> the regulation of chloroplast density.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"19 1","pages":"225-235"},"PeriodicalIF":2.1000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515861/pdf/","citationCount":"0","resultStr":"{\"title\":\"Variation in leaf mesophyll anatomy of fern species imposes significant effects on leaf gas exchange, light capture, and leaf hydraulic conductance.\",\"authors\":\"S Fujii, K Nishida, T K Akitsu, A Kume, Y T Hanba\",\"doi\":\"10.32615/ps.2023.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mesophyll anatomical traits are essential factors for efficient light capture, CO<sub>2</sub> diffusion, and hydraulics in leaves. At the same time, leaf hydraulics are governed by the xylem anatomical traits. Thus, simultaneous analyses of the mesophyll and xylem anatomy will clarify the links among light capture, CO<sub>2</sub> capture, and water use. However, such simultaneous analyses have been scarcely performed, particularly on non-seed plants. Using seven fern species, we first showed that fern species with a large mesophyll thickness had a high photosynthetic rate related to high light capture, high drought tolerance, and low leaf hydraulic conductance. The chloroplast surface area (S<sub>c</sub>) per mesophyll thickness significantly decreased with an increase in mesophyll thickness, which may increase light diffusion and absorption efficiency in each chloroplast. The photosynthetic rate per S<sub>c</sub> was almost constant with mesophyll thickness, which suggests that ferns enhance their light capture ability <i>via</i> the regulation of chloroplast density.</p>\",\"PeriodicalId\":20157,\"journal\":{\"name\":\"Photosynthetica\",\"volume\":\"19 1\",\"pages\":\"225-235\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515861/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photosynthetica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/ps.2023.017\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/ps.2023.017","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

叶肉解剖特征是叶片有效光捕获、CO2扩散和水力学的重要因素。同时,叶片水力学受木质部解剖特征的支配。因此,对叶肉和木质部解剖结构的同时分析将阐明光捕获、二氧化碳捕获和水利用之间的联系。然而,这种同步分析很少进行,特别是在非种子植物上。以7种蕨类植物为研究对象,我们首次发现叶肉厚度大的蕨类植物具有较高的光合速率,这与高的光捕获能力、高的耐旱性和低的叶片水力导度有关。每叶肉厚度的叶绿体表面积(Sc)随着叶肉厚度的增加而显著降低,这可能增加了每个叶绿体的光扩散和吸收效率。每Sc光合速率与叶肉厚度基本一致,表明蕨类植物通过调节叶绿体密度来增强其光捕获能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variation in leaf mesophyll anatomy of fern species imposes significant effects on leaf gas exchange, light capture, and leaf hydraulic conductance.

The mesophyll anatomical traits are essential factors for efficient light capture, CO2 diffusion, and hydraulics in leaves. At the same time, leaf hydraulics are governed by the xylem anatomical traits. Thus, simultaneous analyses of the mesophyll and xylem anatomy will clarify the links among light capture, CO2 capture, and water use. However, such simultaneous analyses have been scarcely performed, particularly on non-seed plants. Using seven fern species, we first showed that fern species with a large mesophyll thickness had a high photosynthetic rate related to high light capture, high drought tolerance, and low leaf hydraulic conductance. The chloroplast surface area (Sc) per mesophyll thickness significantly decreased with an increase in mesophyll thickness, which may increase light diffusion and absorption efficiency in each chloroplast. The photosynthetic rate per Sc was almost constant with mesophyll thickness, which suggests that ferns enhance their light capture ability via the regulation of chloroplast density.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photosynthetica
Photosynthetica 生物-植物科学
CiteScore
5.60
自引率
7.40%
发文量
55
审稿时长
3.8 months
期刊介绍: Photosynthetica publishes original scientific papers and brief communications, reviews on specialized topics, book reviews and announcements and reports covering wide range of photosynthesis research or research including photosynthetic parameters of both experimental and theoretical nature and dealing with physiology, biophysics, biochemistry, molecular biology on one side and leaf optics, stress physiology and ecology of photosynthesis on the other side. The language of journal is English (British or American). Papers should not be published or under consideration for publication elsewhere.
期刊最新文献
On "P750s" in cyanobacteria: A historical perspective. Impact of exogenous rhamnolipids on plant photosynthesis and biochemical parameters under prolonged heat stress. Chloroplast antioxidant reactions associated with zinc-alleviating effects on iron toxicity in wheat seedlings. Using hyperspectral reflectance to detect changes in photosynthetic activity in Atractylodes chinensis leaves as a function of decreasing soil water content. Ascorbic acid is involved in melatonin-induced salinity tolerance of maize (Zea mays L.) by regulating antioxidant and photosynthetic capacities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1