采用多层聚合物薄膜和粘合剂的太赫兹光低成本抗反射涂层

A. Ahmed, Aimé Braconnier, Josh Gibbs, J. Burgess
{"title":"采用多层聚合物薄膜和粘合剂的太赫兹光低成本抗反射涂层","authors":"A. Ahmed, Aimé Braconnier, Josh Gibbs, J. Burgess","doi":"10.1109/PN52152.2021.9597923","DOIUrl":null,"url":null,"abstract":"Antireflection coatings (ARCs) provide a powerful method to reduce reflective losses and eliminate spurious reflections that can limit experiments. At Terahertz (THz) frequencies, ARC options remain limited. To address this, we employ a combination of commercially available polymer adhesive tapes and films to create ARCs for THz light, that can be applied on a wide range of substrates. In addition to their ease of application, one coating can be removed from a substrate and a different one can be applied. Both narrow and wide band performance are achieved from different coatings, which can be tuned to a target frequency by altering the thickness of polymer layers. We have experimentally evaluated the efficacy of the layered structures in the bandwidth 0.25-2.25 THz using THz time domain spectroscopy. Taking the optical properties of each layer into account, we can model the response of ARCs in both frequency and time domains. These economic coatings can have vast applications where the attenuation of Fresnel loss or Fabry-Perot effect is desired.","PeriodicalId":6789,"journal":{"name":"2021 Photonics North (PN)","volume":"10 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-cost antireflection coatings for terahertz light employing multilayered polymer films and adhesives\",\"authors\":\"A. Ahmed, Aimé Braconnier, Josh Gibbs, J. Burgess\",\"doi\":\"10.1109/PN52152.2021.9597923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antireflection coatings (ARCs) provide a powerful method to reduce reflective losses and eliminate spurious reflections that can limit experiments. At Terahertz (THz) frequencies, ARC options remain limited. To address this, we employ a combination of commercially available polymer adhesive tapes and films to create ARCs for THz light, that can be applied on a wide range of substrates. In addition to their ease of application, one coating can be removed from a substrate and a different one can be applied. Both narrow and wide band performance are achieved from different coatings, which can be tuned to a target frequency by altering the thickness of polymer layers. We have experimentally evaluated the efficacy of the layered structures in the bandwidth 0.25-2.25 THz using THz time domain spectroscopy. Taking the optical properties of each layer into account, we can model the response of ARCs in both frequency and time domains. These economic coatings can have vast applications where the attenuation of Fresnel loss or Fabry-Perot effect is desired.\",\"PeriodicalId\":6789,\"journal\":{\"name\":\"2021 Photonics North (PN)\",\"volume\":\"10 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Photonics North (PN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PN52152.2021.9597923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Photonics North (PN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PN52152.2021.9597923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

增透涂层(arc)提供了一种有效的方法来减少反射损失和消除干扰实验的杂散反射。在太赫兹(THz)频率下,ARC的选择仍然有限。为了解决这个问题,我们采用了市售的聚合物胶带和薄膜的组合来创建太赫兹光的电弧,可以应用于各种基材上。除了易于应用外,一种涂层可以从基材上去除,另一种涂层可以应用。窄带和宽带性能都是通过不同的涂层来实现的,可以通过改变聚合物层的厚度来调整到目标频率。在0.25 ~ 2.25太赫兹波段,我们利用太赫兹时域光谱对层状结构的有效性进行了实验评估。考虑到每一层的光学特性,我们可以在频域和时域对电弧的响应进行建模。这些经济涂层可以有广泛的应用,在衰减菲涅耳损失或法布里-珀罗效应是需要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-cost antireflection coatings for terahertz light employing multilayered polymer films and adhesives
Antireflection coatings (ARCs) provide a powerful method to reduce reflective losses and eliminate spurious reflections that can limit experiments. At Terahertz (THz) frequencies, ARC options remain limited. To address this, we employ a combination of commercially available polymer adhesive tapes and films to create ARCs for THz light, that can be applied on a wide range of substrates. In addition to their ease of application, one coating can be removed from a substrate and a different one can be applied. Both narrow and wide band performance are achieved from different coatings, which can be tuned to a target frequency by altering the thickness of polymer layers. We have experimentally evaluated the efficacy of the layered structures in the bandwidth 0.25-2.25 THz using THz time domain spectroscopy. Taking the optical properties of each layer into account, we can model the response of ARCs in both frequency and time domains. These economic coatings can have vast applications where the attenuation of Fresnel loss or Fabry-Perot effect is desired.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a linear K-Space Spectrometer with GRISM for Line Scanning Optical Coherence Tomography Visualization of Potato Starch Chirality with Polarization Second Harmonic Generation Microscopy Transient Stimulated Raman Chirped-Pulse Amplification (TSRCPA) as an Alternative or Complementary to OPCPA Valley-selective directional emission enabled by a plasmonic nanoantenna Molecular Beam Epitaxy Growth and Characterization of AlGaN Epilayer in the Nitrogen-rich Condition on Si Substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1