一种反f类CMOS压控振荡器,具有高q的一、二谐共振,1/f2- 1/f3相位噪声抑制,实现196.2dBc/Hz FOM

Chee-Cheow Lim, Jun Yin, Pui-in Mak, H. Ramiah, R. Martins
{"title":"一种反f类CMOS压控振荡器,具有高q的一、二谐共振,1/f2- 1/f3相位噪声抑制,实现196.2dBc/Hz FOM","authors":"Chee-Cheow Lim, Jun Yin, Pui-in Mak, H. Ramiah, R. Martins","doi":"10.1109/ISSCC.2018.8310340","DOIUrl":null,"url":null,"abstract":"Second-harmonic common-mode (CM) resonance has been explored for LC oscillators to improve their phase noise (PN) in the past. Its implementation evolves from an explicit design [1] that relies on an extra tail tank, to a recent implicit design [2], where the resonator itself offers a CM impedance peak at 2x the oscillation frequency (F<inf>LO</inf>): Explicit design (Fig. 23.5.1-upper): a high-Q tail tank (Q<inf>TAIL</inf>) is desirable to raise its impedance |Z<inf>TAIL</inf>| at 2FLO and to prevent the loss of L<inf>TAIL</inf> from penalizing the PN in the 1/f<sup>2</sup> region [3]. To compare with the theoretical limit (FOM<inf>MAX</inf>), the FOM in the 1/f<sup>2</sup> PN region is plotted against L<inf>TAIL</inf> at different QTAIL. Closing the gap between FOM<inf>MAX</inf> and FOM imposes an excessive Q<inf>TAIL</inf> of 20 or beyond, which can hardly be achieved and maintained over a wide tuning range.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"8 1","pages":"374-376"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"An inverse-class-F CMOS VCO with intrinsic-high-Q 1st- and 2nd-harmonic resonances for 1/f2-to-1/f3 phase-noise suppression achieving 196.2dBc/Hz FOM\",\"authors\":\"Chee-Cheow Lim, Jun Yin, Pui-in Mak, H. Ramiah, R. Martins\",\"doi\":\"10.1109/ISSCC.2018.8310340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Second-harmonic common-mode (CM) resonance has been explored for LC oscillators to improve their phase noise (PN) in the past. Its implementation evolves from an explicit design [1] that relies on an extra tail tank, to a recent implicit design [2], where the resonator itself offers a CM impedance peak at 2x the oscillation frequency (F<inf>LO</inf>): Explicit design (Fig. 23.5.1-upper): a high-Q tail tank (Q<inf>TAIL</inf>) is desirable to raise its impedance |Z<inf>TAIL</inf>| at 2FLO and to prevent the loss of L<inf>TAIL</inf> from penalizing the PN in the 1/f<sup>2</sup> region [3]. To compare with the theoretical limit (FOM<inf>MAX</inf>), the FOM in the 1/f<sup>2</sup> PN region is plotted against L<inf>TAIL</inf> at different QTAIL. Closing the gap between FOM<inf>MAX</inf> and FOM imposes an excessive Q<inf>TAIL</inf> of 20 or beyond, which can hardly be achieved and maintained over a wide tuning range.\",\"PeriodicalId\":6617,\"journal\":{\"name\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"volume\":\"8 1\",\"pages\":\"374-376\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2018.8310340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2018.8310340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

为了改善LC振荡器的相位噪声(PN),过去一直在研究二阶谐波共模共振。它的实现从依赖于额外尾槽的显式设计[1]演变为最近的隐式设计[2],其中谐振器本身在振荡频率(FLO)的2倍处提供CM阻抗峰值:显式设计(图23.5.1-上):高q尾槽(QTAIL)需要在2FLO处提高其阻抗|ZTAIL,并防止lttail的损失损害1/f2区域的PN[3]。为了与理论极限(FOMMAX)进行比较,将1/f2 PN区域的FOM与不同QTAIL的LTAIL进行对比。缩小FOMMAX和FOM之间的差距会施加20或更高的过度QTAIL,这很难在宽调谐范围内实现和维持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An inverse-class-F CMOS VCO with intrinsic-high-Q 1st- and 2nd-harmonic resonances for 1/f2-to-1/f3 phase-noise suppression achieving 196.2dBc/Hz FOM
Second-harmonic common-mode (CM) resonance has been explored for LC oscillators to improve their phase noise (PN) in the past. Its implementation evolves from an explicit design [1] that relies on an extra tail tank, to a recent implicit design [2], where the resonator itself offers a CM impedance peak at 2x the oscillation frequency (FLO): Explicit design (Fig. 23.5.1-upper): a high-Q tail tank (QTAIL) is desirable to raise its impedance |ZTAIL| at 2FLO and to prevent the loss of LTAIL from penalizing the PN in the 1/f2 region [3]. To compare with the theoretical limit (FOMMAX), the FOM in the 1/f2 PN region is plotted against LTAIL at different QTAIL. Closing the gap between FOMMAX and FOM imposes an excessive QTAIL of 20 or beyond, which can hardly be achieved and maintained over a wide tuning range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EE1: Student research preview (SRP) A 512Gb 3b/Cell 3D flash memory on a 96-word-line-layer technology Single-chip reduced-wire active catheter system with programmable transmit beamforming and receive time-division multiplexing for intracardiac echocardiography A 2.5nJ duty-cycled bridge-to-digital converter integrated in a 13mm3 pressure-sensing system A 36.3-to-38.2GHz −216dBc/Hz2 40nm CMOS fractional-N FMCW chirp synthesizer PLL with a continuous-time bandpass delta-sigma time-to-digital converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1