搅拌摩擦固结法回收铝合金切屑

Samuel Kefeyalew Abebe, Desalegn Wogaso Wolla
{"title":"搅拌摩擦固结法回收铝合金切屑","authors":"Samuel Kefeyalew Abebe, Desalegn Wogaso Wolla","doi":"10.54392/irjmt2331","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to develop AA5052 aluminum alloy solid disc from machining wastes via friction stir consolidation (FSC) process & optimize its parameters: die rotational speed, pre-compact aspect ratio and processing time. At first, the required dedicated tooling is designed and built. Then, solid discs are fabricated from AA5052 aluminum alloy chips using FSC process. Taguchi L9 orthogonal array is used to analyze and optimize the process. Experimental parameters and their levels considered are rotational speed (315, 400 and 500 rpm), pre-compact aspect ratio (25.4/7, 25.4/5 and 25.4/3) and processing time (30, 45 and 60 sec). Using standard tests, compressive strength, hardness and microstructure of the consolidated solid disc are evaluated. The results reveal that solid discs are successfully fabricated using FSC using dedicated tooling, and rotational speed (500 rpm), pre-compact aspect ratio (25.4/3) and processing time (60 sec) are optimal processing conditions. Microstructure examination of the solid disc shows finer and fully recrystallized grains in axial cross section orientation. Moreover, the results show compressive strength and hardness of the solid disc are comparable to that of forged or cast disc and suitable for most engineering structural applications.","PeriodicalId":14412,"journal":{"name":"International Research Journal of Multidisciplinary Technovation","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aluminum Alloy Chips Recycling using Friction Stir Consolidation\",\"authors\":\"Samuel Kefeyalew Abebe, Desalegn Wogaso Wolla\",\"doi\":\"10.54392/irjmt2331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to develop AA5052 aluminum alloy solid disc from machining wastes via friction stir consolidation (FSC) process & optimize its parameters: die rotational speed, pre-compact aspect ratio and processing time. At first, the required dedicated tooling is designed and built. Then, solid discs are fabricated from AA5052 aluminum alloy chips using FSC process. Taguchi L9 orthogonal array is used to analyze and optimize the process. Experimental parameters and their levels considered are rotational speed (315, 400 and 500 rpm), pre-compact aspect ratio (25.4/7, 25.4/5 and 25.4/3) and processing time (30, 45 and 60 sec). Using standard tests, compressive strength, hardness and microstructure of the consolidated solid disc are evaluated. The results reveal that solid discs are successfully fabricated using FSC using dedicated tooling, and rotational speed (500 rpm), pre-compact aspect ratio (25.4/3) and processing time (60 sec) are optimal processing conditions. Microstructure examination of the solid disc shows finer and fully recrystallized grains in axial cross section orientation. Moreover, the results show compressive strength and hardness of the solid disc are comparable to that of forged or cast disc and suitable for most engineering structural applications.\",\"PeriodicalId\":14412,\"journal\":{\"name\":\"International Research Journal of Multidisciplinary Technovation\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Research Journal of Multidisciplinary Technovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54392/irjmt2331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal of Multidisciplinary Technovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54392/irjmt2331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用搅拌摩擦固结法(FSC)从加工废料中制备AA5052铝合金固体圆盘,并对模具转速、预密实长径比、加工时间等参数进行优化。首先,设计和构建所需的专用工具。然后,采用FSC工艺在AA5052铝合金芯片上制备了固体圆盘。采用田口L9正交阵列对工艺进行分析和优化。考虑的实验参数及其水平为转速(315、400和500 rpm)、预压缩长宽比(25.4/7、25.4/5和25.4/3)和处理时间(30、45和60秒)。采用标准试验方法,对固结固体盘的抗压强度、硬度和微观结构进行了评价。结果表明:采用专用模具,采用FSC技术成功制备了固体圆盘,最佳加工条件为转速(500 rpm)、预压长径比(25.4/3)和加工时间(60秒)。实心圆盘的显微组织检查显示,在轴向横截面取向上晶粒更细且完全再结晶。此外,结果表明,实心圆盘的抗压强度和硬度与锻造或铸造圆盘相当,适合大多数工程结构应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aluminum Alloy Chips Recycling using Friction Stir Consolidation
The purpose of this paper is to develop AA5052 aluminum alloy solid disc from machining wastes via friction stir consolidation (FSC) process & optimize its parameters: die rotational speed, pre-compact aspect ratio and processing time. At first, the required dedicated tooling is designed and built. Then, solid discs are fabricated from AA5052 aluminum alloy chips using FSC process. Taguchi L9 orthogonal array is used to analyze and optimize the process. Experimental parameters and their levels considered are rotational speed (315, 400 and 500 rpm), pre-compact aspect ratio (25.4/7, 25.4/5 and 25.4/3) and processing time (30, 45 and 60 sec). Using standard tests, compressive strength, hardness and microstructure of the consolidated solid disc are evaluated. The results reveal that solid discs are successfully fabricated using FSC using dedicated tooling, and rotational speed (500 rpm), pre-compact aspect ratio (25.4/3) and processing time (60 sec) are optimal processing conditions. Microstructure examination of the solid disc shows finer and fully recrystallized grains in axial cross section orientation. Moreover, the results show compressive strength and hardness of the solid disc are comparable to that of forged or cast disc and suitable for most engineering structural applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Advancing Fault Detection Efficiency in Wireless Power Transmission with Light GBM for Real-Time Detection Enhancement Quantum Chemical Computational Studies on the Structural Aspects, Spectroscopic Properties, Hirshfeld Surfaces, Donor-Acceptor Interactions and Molecular Docking of Clascosterone: A Promising Antitumor Agent Evaluation of Structural Stability of Four-Storied building using Non-Destructive Testing Techniques Diagnosis of COVID-19 in X-ray Images using Deep Neural Networks An Ensemble Classification Model to Predict Alzheimer’s Incidence as Multiple Classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1