{"title":"高导电性多孔材料内嵌PCM的管壳潜热蓄热系统充能过程的数值分析","authors":"M. Mahdavi, S. Tiari, C. Sawyer","doi":"10.1115/imece2019-11414","DOIUrl":null,"url":null,"abstract":"\n The purpose of this study was to ascertain the effects of impregnation of porous material with the PCM on the thermal performance of a shell and tube latent heat thermal energy storage system. The heat transfer fluid flows in the tube while the phase change material is stored in the shell. A transient numerical model was developed to simulate the charging process of the system. The effects of porous material filling ratio, and its properties such as porosity and permeability, were studied on the performance of the system. The results showed that the porosity of the material or the metal foam has the greatest effect on the heat transfer and charging time of the system specifically for a filling ratio of one, or when the entire annular gap between the inner and outer tube is filled with the metal foam. As the filling ratio decreases, the effect of the porosity decreases; however, there is no linear relationship between the filling ratio and the decrease in the melting time as the porosity changes.","PeriodicalId":23629,"journal":{"name":"Volume 6: Energy","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Analysis of Charging Process of a Shell and Tube Latent Heat Thermal Energy Storage System With PCM Embedded in Highly Conductive Porous Material\",\"authors\":\"M. Mahdavi, S. Tiari, C. Sawyer\",\"doi\":\"10.1115/imece2019-11414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The purpose of this study was to ascertain the effects of impregnation of porous material with the PCM on the thermal performance of a shell and tube latent heat thermal energy storage system. The heat transfer fluid flows in the tube while the phase change material is stored in the shell. A transient numerical model was developed to simulate the charging process of the system. The effects of porous material filling ratio, and its properties such as porosity and permeability, were studied on the performance of the system. The results showed that the porosity of the material or the metal foam has the greatest effect on the heat transfer and charging time of the system specifically for a filling ratio of one, or when the entire annular gap between the inner and outer tube is filled with the metal foam. As the filling ratio decreases, the effect of the porosity decreases; however, there is no linear relationship between the filling ratio and the decrease in the melting time as the porosity changes.\",\"PeriodicalId\":23629,\"journal\":{\"name\":\"Volume 6: Energy\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6: Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2019-11414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-11414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Analysis of Charging Process of a Shell and Tube Latent Heat Thermal Energy Storage System With PCM Embedded in Highly Conductive Porous Material
The purpose of this study was to ascertain the effects of impregnation of porous material with the PCM on the thermal performance of a shell and tube latent heat thermal energy storage system. The heat transfer fluid flows in the tube while the phase change material is stored in the shell. A transient numerical model was developed to simulate the charging process of the system. The effects of porous material filling ratio, and its properties such as porosity and permeability, were studied on the performance of the system. The results showed that the porosity of the material or the metal foam has the greatest effect on the heat transfer and charging time of the system specifically for a filling ratio of one, or when the entire annular gap between the inner and outer tube is filled with the metal foam. As the filling ratio decreases, the effect of the porosity decreases; however, there is no linear relationship between the filling ratio and the decrease in the melting time as the porosity changes.