介电材料科学与设计中的第一性原理建模

M. Sato
{"title":"介电材料科学与设计中的第一性原理建模","authors":"M. Sato","doi":"10.1109/CEIDP50766.2021.9705391","DOIUrl":null,"url":null,"abstract":"First-principles calculation and data-centric approach have become powerful tools for materials design. In this study, we introduce our latest research outcomes that are related to computational dielectric materials science. The main contents are as follows: (1) first-principles-based multiscale modeling of electronic charge transfer and molecular dynamics simulation of ionic carrier transfer in polymer dielectrics, (2) first-principles modeling of the inorganic filler/polymer interface and charge injection from the (metal) electrode to polymer dielectrics, and (3) a combined first-principles and machine learning approach for predicting dielectric properties of various materials. The recent advances in the atomistic understanding of the electrical properties of dielectric materials is highlighted. In addition, we show that, with this knowledge of the underlying physics, one can develop a machine learning model that can accurately predict the physical properties, albeit with only a small dataset.","PeriodicalId":6837,"journal":{"name":"2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","volume":"66 1","pages":"85-88"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-Principles Modeling in the Context of Dielectric Materials Science and Design\",\"authors\":\"M. Sato\",\"doi\":\"10.1109/CEIDP50766.2021.9705391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"First-principles calculation and data-centric approach have become powerful tools for materials design. In this study, we introduce our latest research outcomes that are related to computational dielectric materials science. The main contents are as follows: (1) first-principles-based multiscale modeling of electronic charge transfer and molecular dynamics simulation of ionic carrier transfer in polymer dielectrics, (2) first-principles modeling of the inorganic filler/polymer interface and charge injection from the (metal) electrode to polymer dielectrics, and (3) a combined first-principles and machine learning approach for predicting dielectric properties of various materials. The recent advances in the atomistic understanding of the electrical properties of dielectric materials is highlighted. In addition, we show that, with this knowledge of the underlying physics, one can develop a machine learning model that can accurately predict the physical properties, albeit with only a small dataset.\",\"PeriodicalId\":6837,\"journal\":{\"name\":\"2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)\",\"volume\":\"66 1\",\"pages\":\"85-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEIDP50766.2021.9705391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP50766.2021.9705391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

第一性原理计算和以数据为中心的方法已经成为材料设计的有力工具。本文介绍了我们在计算介质材料科学方面的最新研究成果。主要研究内容如下:(1)基于第一性原理的聚合物介质中电子电荷转移的多尺度建模和离子载流子转移的分子动力学模拟;(2)无机填料/聚合物界面的第一性原理建模和从(金属)电极到聚合物介质的电荷注入;(3)结合第一性原理和机器学习方法预测各种材料的介电性质。强调了电介质材料电学性质的原子性认识方面的最新进展。此外,我们表明,有了这些基础物理学的知识,人们可以开发一个机器学习模型,可以准确地预测物理性质,尽管只有一个小的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
First-Principles Modeling in the Context of Dielectric Materials Science and Design
First-principles calculation and data-centric approach have become powerful tools for materials design. In this study, we introduce our latest research outcomes that are related to computational dielectric materials science. The main contents are as follows: (1) first-principles-based multiscale modeling of electronic charge transfer and molecular dynamics simulation of ionic carrier transfer in polymer dielectrics, (2) first-principles modeling of the inorganic filler/polymer interface and charge injection from the (metal) electrode to polymer dielectrics, and (3) a combined first-principles and machine learning approach for predicting dielectric properties of various materials. The recent advances in the atomistic understanding of the electrical properties of dielectric materials is highlighted. In addition, we show that, with this knowledge of the underlying physics, one can develop a machine learning model that can accurately predict the physical properties, albeit with only a small dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Principal Component Analysis for the Monitoring of the Aging Process of Nuclear Electrical Cable Insulation Simulation of Partial Discharge Electromagnetic Wave Propagation in a Switchgear Compartment Comparative Analysis of Dielectric Insulating Ropes for Live Working DC Electrical Trees in XLPE Induced by Short Circuits A Non-destructive Condition Assessment Method for DBC Substrate: Dielectric Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1