纳米Li2CO3和ZnO对高频低温烧结LiZnTiBi铁氧体微观结构和磁性能的影响

Fang Xu, Yulong Liao, Huaiwu Zhang
{"title":"纳米Li2CO3和ZnO对高频低温烧结LiZnTiBi铁氧体微观结构和磁性能的影响","authors":"Fang Xu, Yulong Liao, Huaiwu Zhang","doi":"10.11648/J.IJMSA.20190803.11","DOIUrl":null,"url":null,"abstract":"LiZnTi ferrite ceramics with high saturation flux density (Bs), large remanence ratio (Br/Bs) and high saturation magnetization (4πMs) is a vital material for high frequency devices. In the present work, we prepared uniform and compact LiZnTiBi ferrite with large average grain size (>30μm) at 900°C. Firstly, the hybrid materials, including Li2CO3, ZnO, TiO2, Bi2O3 and Fe2O3, were pre-sintered at 850°C at O2 atmosphere. Next, composite additives composited of Li2CO3 and ZnO nanoparticles were added to control grain growth. The influences of the Li2CO3 and nano-ZnO (LZ) on the microstructure and magnetic properties of LiZnTiBi ferrite, especially for grain size, have been analyzed. SEM images demonstrated that moderate LZ additives (x=0.75 wt%) can prevent abnormal grains. Also, the ferrite samples possess compact microstructures. The phenomenon indicated that the LZ additive is a good sintering aid for low-temperature sintering LiZnTiBi ferrites. XRD patterns showed that all samples have a pure spinel phase. The magnetic properties, including Bs, Br/Bs and 4πMs, have weak change when LZ additives were added. However, due to smaller average grain size, the coercivity (Hc) gradually increased. Thus, a low-temperature sintering LiZnTiBi ferrite with high saturation flux density (Bs=311.10 mT), large remanence ratio (Br/Bs=0.86), low coercivity (Hc=244.6 A/m) and high saturation magnetization (Ms=75.40) was obtained when 1.00 wt% LZ additive was added. More important, the LiZnTiBi ferrite possessed uniform average grain. Such a sintering method (i.e., adding composite additive to control abnormal grain) should also promote synthesis of other advanced ceramics for practical applications.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Li2CO3 and ZnO Nanoparticle on Microstructure and Magnetic Properties of Low-Temperature Sintering LiZnTiBi Ferrites for High-Frequency Applications\",\"authors\":\"Fang Xu, Yulong Liao, Huaiwu Zhang\",\"doi\":\"10.11648/J.IJMSA.20190803.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LiZnTi ferrite ceramics with high saturation flux density (Bs), large remanence ratio (Br/Bs) and high saturation magnetization (4πMs) is a vital material for high frequency devices. In the present work, we prepared uniform and compact LiZnTiBi ferrite with large average grain size (>30μm) at 900°C. Firstly, the hybrid materials, including Li2CO3, ZnO, TiO2, Bi2O3 and Fe2O3, were pre-sintered at 850°C at O2 atmosphere. Next, composite additives composited of Li2CO3 and ZnO nanoparticles were added to control grain growth. The influences of the Li2CO3 and nano-ZnO (LZ) on the microstructure and magnetic properties of LiZnTiBi ferrite, especially for grain size, have been analyzed. SEM images demonstrated that moderate LZ additives (x=0.75 wt%) can prevent abnormal grains. Also, the ferrite samples possess compact microstructures. The phenomenon indicated that the LZ additive is a good sintering aid for low-temperature sintering LiZnTiBi ferrites. XRD patterns showed that all samples have a pure spinel phase. The magnetic properties, including Bs, Br/Bs and 4πMs, have weak change when LZ additives were added. However, due to smaller average grain size, the coercivity (Hc) gradually increased. Thus, a low-temperature sintering LiZnTiBi ferrite with high saturation flux density (Bs=311.10 mT), large remanence ratio (Br/Bs=0.86), low coercivity (Hc=244.6 A/m) and high saturation magnetization (Ms=75.40) was obtained when 1.00 wt% LZ additive was added. More important, the LiZnTiBi ferrite possessed uniform average grain. Such a sintering method (i.e., adding composite additive to control abnormal grain) should also promote synthesis of other advanced ceramics for practical applications.\",\"PeriodicalId\":14116,\"journal\":{\"name\":\"International Journal of Materials Science and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJMSA.20190803.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMSA.20190803.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

LiZnTi铁氧体陶瓷具有高饱和磁通密度(Bs)、大剩磁比(Br/Bs)和高饱和磁化强度(4πMs)的特点,是高频器件的重要材料。在900℃下,制备了均匀致密、平均晶粒尺寸大(>30μm)的LiZnTiBi铁氧体。首先,将Li2CO3、ZnO、TiO2、Bi2O3和Fe2O3等杂化材料在850℃O2气氛下进行预烧结。然后,添加Li2CO3和ZnO纳米颗粒复合添加剂来控制晶粒生长。分析了Li2CO3和纳米zno (LZ)对LiZnTiBi铁氧体微观结构和磁性能的影响,特别是对晶粒尺寸的影响。SEM图像表明,适量的LZ添加剂(x=0.75 wt%)可以防止异常晶粒。此外,铁素体样品具有致密的微观结构。这一现象表明LZ添加剂是低温烧结LiZnTiBi铁氧体的良好助烧剂。XRD分析表明,所有样品均具有纯尖晶石相。添加LZ后,材料的磁性能Bs、Br/Bs和4πMs均有微弱变化。但由于平均晶粒尺寸变小,矫顽力(Hc)逐渐增大。因此,当添加1.00 wt% LZ时,可获得高饱和磁通密度(Bs=311.10 mT)、大剩磁比(Br/Bs=0.86)、低矫顽力(Hc=244.6 a /m)和高饱和磁化强度(Ms=75.40)的低温烧结LiZnTiBi铁氧体。更重要的是,litntibi铁氧体具有均匀的平均晶粒。这种烧结方法(即添加复合添加剂来控制异常晶粒)也应促进其他先进陶瓷的合成,以供实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Li2CO3 and ZnO Nanoparticle on Microstructure and Magnetic Properties of Low-Temperature Sintering LiZnTiBi Ferrites for High-Frequency Applications
LiZnTi ferrite ceramics with high saturation flux density (Bs), large remanence ratio (Br/Bs) and high saturation magnetization (4πMs) is a vital material for high frequency devices. In the present work, we prepared uniform and compact LiZnTiBi ferrite with large average grain size (>30μm) at 900°C. Firstly, the hybrid materials, including Li2CO3, ZnO, TiO2, Bi2O3 and Fe2O3, were pre-sintered at 850°C at O2 atmosphere. Next, composite additives composited of Li2CO3 and ZnO nanoparticles were added to control grain growth. The influences of the Li2CO3 and nano-ZnO (LZ) on the microstructure and magnetic properties of LiZnTiBi ferrite, especially for grain size, have been analyzed. SEM images demonstrated that moderate LZ additives (x=0.75 wt%) can prevent abnormal grains. Also, the ferrite samples possess compact microstructures. The phenomenon indicated that the LZ additive is a good sintering aid for low-temperature sintering LiZnTiBi ferrites. XRD patterns showed that all samples have a pure spinel phase. The magnetic properties, including Bs, Br/Bs and 4πMs, have weak change when LZ additives were added. However, due to smaller average grain size, the coercivity (Hc) gradually increased. Thus, a low-temperature sintering LiZnTiBi ferrite with high saturation flux density (Bs=311.10 mT), large remanence ratio (Br/Bs=0.86), low coercivity (Hc=244.6 A/m) and high saturation magnetization (Ms=75.40) was obtained when 1.00 wt% LZ additive was added. More important, the LiZnTiBi ferrite possessed uniform average grain. Such a sintering method (i.e., adding composite additive to control abnormal grain) should also promote synthesis of other advanced ceramics for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graphene Oxide Nanocarriers for Effective Drug Delivery in Breast Cancer Treatment Thermal Insulation of “akassa” Hot Preservation Baskets Using Cow Dung Coatings Review on Fundamental Considerations During Lignocellulosic Fiber Characterization in Light Micromechanical Analysis of Their Composites Surface Modification of Ti-6Al-4V Alloy by Polycaprolactone-Graphene Oxide Composite Coating Dielectric Relaxation, Electric Conductivity and Thermodynamic Studies on Epoxy Polyurethane Blend and Their Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1