输出依赖于单个参数的神经模糊自定义网络

J. A. Hernández, F. Gómez-Castañeda, J. Moreno-Cadenas
{"title":"输出依赖于单个参数的神经模糊自定义网络","authors":"J. A. Hernández, F. Gómez-Castañeda, J. Moreno-Cadenas","doi":"10.1109/ISCAS.2008.4541557","DOIUrl":null,"url":null,"abstract":"In some fuzzy systems the number of rules and the membership functions are estimated by designers, often being a tedious task. In this paper we describe a neurofuzzy system (SIMAP) able to build its structure and membership functions using only the input-output data. The system compresses the input-output data, minimizing predictive error by the increment of an input vigilance-parameter, in a similar way to the fuzzy-artmap neural network (G A. Carpenter et al., 1992). In the SIMAP network the output-clusters are weighted to obtain the final output vector, implementing a continuous map. A method for calculating the membership functions in neurofuzzy systems is proposed. These membership functions are used to operate the SIMAP network. The softness of the inference mechanism can be controlled adjusting a single fuzziness-parameter p.","PeriodicalId":91083,"journal":{"name":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","volume":"13 1","pages":"872-875"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A neurofuzzy selfmade network with output dependable on a single parameter\",\"authors\":\"J. A. Hernández, F. Gómez-Castañeda, J. Moreno-Cadenas\",\"doi\":\"10.1109/ISCAS.2008.4541557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In some fuzzy systems the number of rules and the membership functions are estimated by designers, often being a tedious task. In this paper we describe a neurofuzzy system (SIMAP) able to build its structure and membership functions using only the input-output data. The system compresses the input-output data, minimizing predictive error by the increment of an input vigilance-parameter, in a similar way to the fuzzy-artmap neural network (G A. Carpenter et al., 1992). In the SIMAP network the output-clusters are weighted to obtain the final output vector, implementing a continuous map. A method for calculating the membership functions in neurofuzzy systems is proposed. These membership functions are used to operate the SIMAP network. The softness of the inference mechanism can be controlled adjusting a single fuzziness-parameter p.\",\"PeriodicalId\":91083,\"journal\":{\"name\":\"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems\",\"volume\":\"13 1\",\"pages\":\"872-875\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2008.4541557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2008.4541557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在一些模糊系统中,规则和隶属函数的数量是由设计者来估计的,这往往是一项繁琐的任务。在本文中,我们描述了一个神经模糊系统(SIMAP),它能够仅使用输入输出数据来构建其结构和隶属函数。该系统压缩输入输出数据,通过增加输入警戒参数来最小化预测误差,类似于fuzzy-artmap神经网络(G . a . Carpenter et al., 1992)。在SIMAP网络中,对输出簇进行加权得到最终的输出向量,实现连续映射。提出了一种计算神经模糊系统隶属函数的方法。这些隶属函数用于操作SIMAP网络。该推理机制的柔软度可以通过调节单个模糊参数p来控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A neurofuzzy selfmade network with output dependable on a single parameter
In some fuzzy systems the number of rules and the membership functions are estimated by designers, often being a tedious task. In this paper we describe a neurofuzzy system (SIMAP) able to build its structure and membership functions using only the input-output data. The system compresses the input-output data, minimizing predictive error by the increment of an input vigilance-parameter, in a similar way to the fuzzy-artmap neural network (G A. Carpenter et al., 1992). In the SIMAP network the output-clusters are weighted to obtain the final output vector, implementing a continuous map. A method for calculating the membership functions in neurofuzzy systems is proposed. These membership functions are used to operate the SIMAP network. The softness of the inference mechanism can be controlled adjusting a single fuzziness-parameter p.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
期刊最新文献
Design of Compensator for Modified Multistage CIC-Based Decimation Filter with Improved Characteristics Using the Miller Theorem to Analyze Two-Stage Miller-Compensated Opamps Analog processing by digital gates: fully synthesizable IC design for IoT interfaces A Parallel Radix-2 k FFT Processor using Single-Port Merged-Bank Memory Differential Fowler-Nordheim Tunneling Dynamical System for Attojoule Sensing and Recording.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1